Direkt zum Inhalt

Schwarze Löcher: Das erste Foto eines Schwarzen Lochs

Endlich! Das schon seit Jahren erwartete, erste direkte Bild eines Schwarzes Lochs ist nun mit einem globalen Netzwerk aus Radioteleskopen gelungen. Das spektakuläre »Foto« gibt den Blick frei in das Herz der Galaxie Messier 87 in 55 Millionen Lichtjahren Entfernung. Dort sitzt eines der größten bekannten Schwarzen Löcher, das Materie verschlingt, diese zum Leuchten bringt und so das Loch ­sichtbar werden lässt.
Schwarzes Loch

Einem Team von 207 internationalen Wissenschaftlern aus 59 In­­s­­­tituten in 18 Ländern ist mit dem »Event Horizon Telescope« (EHT) eine bahnbrechende Aufnahme gelungen. Am Mittwoch, den 10. April 2019 um 15 Uhr MESZ wurde in mehreren weltweit stattfindenden Pressekonferenzen verkündet, dass das EHT-Team das erste hochaufgelöste »Foto« von einem Schwarzen Loch gemacht hat. Die große Herausforderung ein Schwarzes Loch abzubilden, besteht darin, dass die kompakten und weit entfernten Objekte am Himmel winzig erscheinen – bislang jenseits der Auflösungsgrenze.

Wie ein solches Bild aussehen müsste, ist schon seit Jahrzehnten in der Theorie bekannt. Aber erst jetzt erreichte das EHT-Team die notwendige Auflösung, indem acht Radioteleskope an sechs verschiedenen geografischen Orten zum Einsatz kamen. Dies geschah bei einer Beobachtungswellenlänge von 1,3 Millimeter, entsprechend einer Frequenz von 230 Gigahertz. Das erste »Radiofoto« eines extrem massereichen Schwarzen Lochs ist das Ergebnis einer aufwändigen Bildrekonstruktion. Es enthüllt den Blick in das Herz der gigantischen, elliptischen Zentralgalaxie des 55 Millionen Lichtjahre entfernten Virgo-Galaxienhaufens Virgo A, im Optischen als Messier 87, kurz M 87, bekannt. Die kompakte Radioquelle, in dessen Zen­trum das extrem massereiche Schwarze Loch vermutet wird, trägt die Bezeichnung M 87*.

Die EHT-Aufnahmen erreichen die bislang höchste Auflösung in der Geschichte der erdgebundenen Radioastronomie. Dabei kommt eine besondere Methode zum Einsatz, die Interferometrie mit sehr langen Basislinien oder Very Long Baseline Interferometry (VLBI). Mittels VLBI werden die Messdaten von Radioantennen an verschiedenen, weit voneinander entfernten Standorten getrennt voneinander aufgezeichnet und danach per Computer zusammengeführt und aufeinander abgestimmt, also korreliert. Das Auflösungsvermögen herkömmlicher optischer Teleskope wird durch den Objektivdurchmesser bestimmt. Bei Radioschüsseln ist gleichermaßen der Durchmesser der Schüssel entscheidend. Beim Zusammenschalten mehrerer Antennen ist ihr Abstand, also die Basislinie, der wichtige Faktor. Allerdings ist diese Technik alles andere als trivial, müssen die eingehenden Signale doch präzise mit Atomuhren synchronisiert und die geografischen Abstände der Antennen in allen drei Raumrichtungen millimetergenau bekannt sein.

Das neue EHT-Foto zeigt eindrucksvoll die zentrale Maschine von M 87 sowie einen Ring aus leuchtendem Gas, der einen Durchmesser von rund 40 Mikrobogensekunden hat. Die Beobachtereinheit macht die wahnwitzige Kleinheit des Winkels deutlich: Eine Bogensekunde ist der 3600. Teil eines Grades, und »Mikro« steht für ein Millionstel. Mit anderen Worten: Das Schwarze Loch von M 87 erscheint am Himmel so groß wie eine Zwei-Euro-Münze auf dem Mond, wenn man sie von der Erde aus betrachtet!

Der Plasmaring gibt offenbar Radiowellen ab, allerdings ist die Helligkeitsverteilung entlang des Rings nicht gleichförmig, sondern asymmetrisch. Unter der Annahme einer Entfernung von 16,8 Megaparsec (55 Millionen Lichjahren) ist der Durchmesser des Rings konsistent mit dem zu erwartenden »Schatten« eines Schwarzen Lochs, das eine Masse von 6,5 Milliarden Sonnenmassen aufweist. Wie es zu dem »Schatten« kommt, klären wir gleich …

Kennen Sie schon …

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Sterne und Weltraum – Gravitationswellen – Wie ist der Status bei gemessenen Signalen?

Gravitationswellendetektoren messen seit April 2024 wieder Signale von Schwarzen Löchern – in unserer Titelgeschichte erfahren Sie mehr über die neuen Erkenntnisse zu diesen rätselhaften Objekten. Darüber hinaus zeigen wir Ihnen die Technik der JANUS-Kamera auf der europäischen Raumsonde JUICE, die im Juli 2031 Jupiter und seine Monde detailliert erkunden soll. Wir berichten über die erfolgreiche Probennahme von der Mondrückseite mit der chinesischen Sonde Chang’e 6 und zeigen neue Aufnahmen des Weltraumteleskopes Euclid.

Spektrum der Wissenschaft – Eine neue Weltformel

Rund 100 Jahre währt die Suche der theoretischen Physik nach einer Quantentheorie der Schwerkraft. Doch vielleicht kann die Gravitation in einer Weltformel so bleiben, wie sie ist – zumindest fast. Experimente könnten die neue Theorie schon bald testen. Außerdem im Heft: Die Bedeutung der Böden der Erde wurden lange unterschätzt. Zahlreiche Organismen im Boden zersetzen abgestorbenes organisches Material und fördern so den globalen Kohlenstoffkreislauf. Gammastrahlenblitze mischen gelegentlich die irdische Ionosphäre durch. Aber brachten kosmische Explosionen das Leben auf der Erde schon einmal an den Rand der Existenz? Selbst unter dem Eis des arktischen Ozeans findet man Lava speiende Vulkane und Schwarze Raucher. Dies bietet einen neuen Blick auf die geologischen Vorgänge in unserem Planeten.

  • Literaturhinweise

Bromley, B. C. et al.: Polarimetric imaging of the massive black hole at the galactic center. The Astrophysical Journal Letters 555, 2001

Broderick, A. E. & Loeb, A.: Imaging the black hole silhouette of M 87. The Astrophysical Journal 697, 2009

Falcke, H. et al.: Viewing the shadow of the black hole at the galactic center. The Astrophysical Journal Letters 528, 2000

Luminet, J.-P.: Image of a spherical black hole with thin accretion disk. Astronomy & Astrophysics 75, 1979

The Event Horizon Telescope Collaboration: First M 87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. The Astrophysical Journal Letters 875, 2019

The Event Horizon Telescope Collaboration: First M 87 Event Horizon Telescope results. IV Imaging the central supermassive black hole. The Astrophysical Journal Letters 875, 2019

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.