Dunkle Materie: Was können wir vom AMS-Experiment lernen?
Viele der Elementarteilchen, die wir heute kennen, wurden in der ersten Hälfte des 20. Jahrhunderts in der kosmischen Strahlung nachgewiesen. Dazu gehören beispielsweise das Positron (das Antiteilchen des Elektrons und damit der erste bekannte Vertreter der Antimaterie), das Myon (eine Art schweres Elektron) und die Pionen und Kaonen (instabile Teilchen, die aus einem Quark-Antiquark-Paar aufgebaut sind). Diese Entdeckungen haben den Grundstein für das Forschungsgebiet der Hochenergiephysik gelegt und unser modernes Verständnis von Elementarteilchen geprägt. Das liegt daran, dass die Wechselwirkungen von kosmischer Strahlung mit den Gasmolekülen in der oberen Erdatmosphäre zu den energiereichsten Ereignissen zählen, die wir kennen. Sie übertreffen dabei alles, was seinerzeit im Labor erreicht werden konnte – manche der hochenergetischen Teilchen in der kosmischen Strahlung übersteigen sogar die Energien, die mit dem größten irdischen Beschleuniger, dem Large Hadron Collider LHC, erreicht werden können.
Erst als ab den 1950er Jahren mit Teilchenbeschleunigern der Gigaelektronvolt-Energiebereich zugänglich wurde, begannen die Teilchenphysiker, sich bevorzugt künstlichen Quellen zuzuwenden. Teilchenbeschleuniger ermöglichten nun im Labor hochenergetische Wechselwirkungen unter kontrollierten Bedingungen, was ganz neue Wege für präzise Messungen und somit auch für die Untersuchung von seltenen Teilchen und Prozessen eröffnete ...
Schreiben Sie uns!
Beitrag schreiben