Thermodynamik: Die Symmetrie von Phasenübergängen
Dass Stoffe bei äußeren Einflüssen wie Temperaturänderungen ihre Eigenschaften teilweise ruckartig wechseln, faszinierte die Menschheit bereits in der Antike. Die physikalischen Beschreibungen solcher Phasenübergänge offenbaren spannende Symmetrien, weswegen sich inzwischen auch Mathematikerinnen und Mathematiker mit dem Gebiet befassen. Im Dezember 2020 hat ein Forscherteam ein erstaunliches Ergebnis veröffentlicht: Unterschiedlichste Systeme erweisen sich als rotationsinvariant, wenn sie kontinuierlich von einer Phase in eine andere übergehen – unabhängig von ihren mikroskopischen Details.
Das Paradebeispiel für eine rotationssymmetrische Figur ist ein Kreis. Ganz gleich, von welcher Seite man ihn betrachtet, sieht er immer identisch aus. Auf physikalische Systeme übertragen heißt das, ihre beobachtbaren Eigenschaften ändern sich nicht, wenn man sie dreht. Zwar war schon früher bekannt, dass einige Modelle in der Nähe von Phasenübergängen rotationsinvariant sind, aber bei vielen anderen blieb die Frage offen.
Die Autoren der neuen Arbeit konnten erstmals Rotationssymmetrie für eine breite Klasse von Systemen nachweisen. Es handelt sich dabei somit nicht um Einzelfälle, sondern ist ein universelles Phänomen …
Schreiben Sie uns!
Beitrag schreiben