Informatik: Vermehrungsfähige Maschinen
Erratum
Auf S. 87, linke Spalte, unterhalb der Grafik, muss es heißen: "Wenn es zum Zeitpunkt t=0 im ganzen Universum eine einzige lebende Zelle gibt, dann erhält man nacheinander 9, 25, 49, ... (nicht: 9, 16, 25, ...) Exemplare dieses Urobjekts." Carina Quirmbach aus Düsseldorf hat uns auf den Fehler aufmerksam gemacht.
Es ist ein beliebtes Thema der Sciencefiction: Ein Roboter stellt eine perfekte Kopie seiner selbst her, ohne Instruktionen von außen zu benötigen. Seine Interaktion mit der Umwelt beschränkt sich darauf, dass er ihr Materie und Energie entnimmt. Unvermeidlich folgt im Roman das nächste Ereignis: Der neu geschaffene Roboter tut es seinem Erzeuger gleich, und alsbald vermehren sich die Blechwesen wie die Karnickel, die Killerbienen oder die Menschen.
Folgerichtig enden die meisten Romane in der großen Katastrophe. Aber von solchen düsteren Endzeitvisionen war die Aufbruchsstimmung Anfang der 1950er Jahre weit entfernt. Die Erbauer der frühen Computer in den USA begannen, die theoretisch ungeheure Leistungsfähigkeit ihrer Geräte zu erfassen und deren Grenzen auszuloten. Wäre es prinzipiell möglich, einen Roboter so zu programmieren, dass er nach einer Anleitung, die in ihm enthalten ist, sich selbst nachbaut? Und was wären dafür die minimalen Voraussetzungen?
Mit dieser Frage beschäftigte sich vor allem John von Neumann (1903 – 1957), der legendäre amerikanische Mathematiker ungarischer Abstammung, dem wir auch die Architektur der heute verbreiteten Computer verdanken. Sein Freund Stan Ulam (1909 – 1984), den er aus gemeinsamer Arbeit an der Entwicklung der Atombombe kannte, schlug ihm vor, das Problem im Rahmen einer vereinfachten abstrakten Welt zu studieren. Nach von Neumanns Tod führte Arthur W. Burks (1915 – 2008), einer der Entwickler des frühen amerikanischen Elektronenrechners ENIAC, dessen Ansätze fort und veröffentlichte sie 1966 in dem Buch "Theory of Self-Reproducing Automata". Das Werk wurde berühmt und regte eine Vielzahl von Forschungsprojekten an...
Schreiben Sie uns!
1 Beitrag anzeigen