Sternentwicklung: Ein janusköpfiger Neutronenstern
Pulsare sind kompakte schnell rotierende Sterne von nur etwa 20 Kilometer Durchmesser (die Größe einer kleineren Stadt) mit einer Gesamtmasse, die ungefähr der Masse unserer Sonne entspricht. Sie haben ein starkes Magnetfeld, ungefähr eine Million mal stärker als alle Magnetfelder, die in irdischen Laboratorien künstlich erzeugt werden können. Ein Pulsar gibt seine Strahlung sehr stark gebündelt ab. Wenn der Strahlenkegel des Pulsars im Lauf seiner Rotation über die Erde streift, wird ein kurzdauernder Strahlungspuls beobachtet, ähnlich wie bei einem Leuchtturm. Einige Pulsare geben Strahlung über die gesamte Breite des elektromagnetischen Spektrums ab und können sowohl im Röntgen- als auch im Radiobereich beobachtet werden. Obwohl die ersten Pulsare bereits vor mehr als 40 Jahren entdeckt wurden, ist der Mechanismus, mit dem sie ihre Strahlung abgeben, nach wie vor nicht genau bekannt.
Man weiß seit einiger Zeit, dass Pulsare im Radiobereich im Verhalten zwischen zwei (oder sogar mehr) unterschiedlichen Zuständen sehr schnell hin- und herspringen können, wobei sich sowohl die Form als auch die Intensität ihrer Radiopulse ändert. Der Zeitpunkt des Umspringens ist dabei nicht vorhersehbar und kann sehr plötzlich (oft sogar innerhalb einer einzelnen Pulsperiode) auftreten. Aus Daten von Satellitenteleskopen ist bekannt, dass eine Handvoll Radiopulsare auch bei Röntgenfrequenzen nachgewiesen werden können. Das Röntgensignal ist allerdings so schwach, dass bisher nichts über eine Variabilität im Röntgenbereich bekannt ist – könnte es sein, dass das Umspringen auch für die Röntgendaten gilt?
Der Augenblick des Umspringens
Die Wissenschaftler haben einen ganz bestimmten Pulsar mit der Bezeichnung PSR B0943+10 untersucht – einer der ersten entdeckten Pulsare überhaupt. Die Signale dieses Pulsars ändern alle paar Stunden ihre Form und Helligkeit, und diese Änderungen ereignen sich innerhalb von nur einer Sekunde. Es ist als ob der Pulsar zwei ganz unterschiedliche Persönlichkeiten hätte. Da PSR B0943+10 einer der wenigen Pulsare ist, bei denen auch Röntgenstrahlung entdeckt wurde, sollte die Untersuchung des Röntgenverhaltens während der Änderung in der Radiostrahlung Aufschluss geben können über die Natur des Strahlungsprozesses in diesen Pulsaren.
Da der Pulsar nur schwache Röntgensignale aussendet, hat das Forschungsteam Beobachtungen mit dem empfindlichsten Röntgenteleskop überhaupt durchgeführt, nämlich mit dem von der europäischen Raumfahrtorganisation ESA finanzierten Röntgensatelliten XMM-Newton. Die Beobachtungen erfolgten über insgesamt sechs Intervalle von jeweils sechs Stunden. Um die genauen Zeiten der Änderung im Radioverhalten des Pulsars zu identifizieren, wurden gleichzeitig Beobachtungen mit den zwei weltweit empfindlichsten Radioteleskope für den Meter-Wellenlängenbereich durchgeführt, dem "Giant Meterwave Radio Telescope" (GMRT) in Indien und dem europäischen "Low Frequency Aray" (LOFAR).
Zwei Zustände auch im Röntgenbereich
Es gab nun ein völlig überraschendes Ergebnis. Die Röntgensignale ändern in der Tat ihr Verhalten synchron mit den Radiosignalen, wie vielleicht auch im Vorfeld zu erwarten. Aber das Ganze geschieht antizyklisch – wenn die Radiopulse stark sind, ist die Röntgenstrahlung schwach. Und bei schwächerer Intensität der Pulse im Radiobereich wird das Röntgensignal entsprechend stärker. "Zu unserer großen Überraschung mussten wir feststellen, dass beim Rückgang der Radiohelligkeit der Signale auf die Hälfte ihre Röntgenhelligkeit auf das Doppelte anstieg", sagt Wim Hermsen, der Leiter des Forschungsprojekts. Und nur dann tritt die Röntgenstrahlung auch in gepulster Form auf. Lucien Kuiper, der die Röntgendaten von XMM-Newton gründlich geprüft hat, zieht daraus den Schluss, dass ein nur zeitweise auftretender "Hotspot" nahe am magnetischen Pol entsprechend den Zustandsänderungen in der Emission des Pulsars an- und ausgeschaltet wird.
Am meisten überrascht dabei, dass die Umwandlung des Erscheinungsbilds bei dem Pulsar innerhalb von Sekunden erfolgt, während er danach für einige Stunden stabil in dem neuen Zustand verharrt. Bislang können die Forscher nicht erklären, warum der Pulsar nun diese dramatischen und nicht vorherberechenbaren Änderungen vollführt. Es spricht aber einiges für sehr schnell stattfindende Änderungen in der gesamten Magnetosphäre des Pulsars.
Ein unerwartetes Ergebnis
45 Jahre nach der Entdeckung der ersten Neutronensterne unterstützt das völlig unerwartete chamäleonhafte Verhalten des Radiopulsars PSR B0943+10 die Erforschung von grundlegenden physikalischen Prozessen unter derart extremen Bedingungen, wie sie in den Magnetosphären von Pulsaren auftreten. Wim Hermsen und seine Kollegen haben zusätzliche Beobachtungszeit mit dem Röntgensatelliten XMM-Newton erhalten. Durch die Kombination von Röntgenbeobachtungen mit Radiobeobachtungen mit einer Reihe von Radioteleskopen wie Westerbork, GMRT, Effelsberg und Jodrell Bank werden sie in der Lage sein, den Pulsar PSR B1822-09 mit ganz ähnlichen Eigenschaften auch simultan in Radio- und Röntgenwellenlängen zu studieren. Dieser Pulsar zeigt in Radiowellenlängen ebenfalls schnelle Übergänge ("flips") in einen anderen Zustand auf.
MPIfR / Red.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.