Direkt zum Inhalt

Nano-Maschinen: Handgreiflich

Nanoroboter und molekulare Maschinen sind heute nicht mehr der Fantasie von Science-Fiction-Autoren vorbehalten, sondern ein sehr realistisches Ziel ernsthafter Forschung. So ist es Münchner Forschern nun gelungen, eine Art "molekularer Hand" zu konstruieren, die einer äußeren Steuerung gehorchend ein Molekül des menschlichen Blutgerinnungsfaktors Thrombin greifen und auch wieder loslassen kann.
Ein besonders geeignetes Material für die Konstruktion molekularer Maschinenteile ist unsere Erbsubstanz DNA. So wurden bereits mehrfach nanomechanische Strukturen auf DNA-Basis entwickelt, die verschiedene dehnungsartige sowie Drehbewegungen ausführen können. Eine spezielle Funktion erfüllten sie allerdings bisher nicht.

Anders nun die molekulare Hand des Teams um Friedrich Simmel, die tatsächlich zupacken kann. Denn die DNA-Hand der Münchner Forscher basiert auf einem DNA-Typus mit Funktionalität, einem so genannten Aptamer. Aptamere sind kurze Abschnitte einzelsträngiger DNA, die gezielt aus einem Zufallspool unzähliger verschiedener DNA-Sequenzen herausgefischt werden. Selektionskriterium ist eine besonders starke Neigung des Aptamers, an ein bestimmtes Protein oder auch kleines Molekül zu binden.

DNA-Maschine | Operationszyklus der molekularen Maschine: Ein DNA-Aptamer faltet sich zu einer würfelförmigen Struktur und schließt dabei Thrombin ein (I). Ein weiteres Aptamer bindet an den "Schalthebel", einen kurzen, freistehenden DNA-Strang (II). Dadurch löst sich die Würfelstruktur auf, und das Thrombin-Molekül wird wieder freigesetzt (III).
Simmel und seine Kollegen wählten ein Aptamer, das den menschlichen Blutgerinnungsfaktor alpha-Thrombin bindet. Das Aptamer besteht aus 15 Basen, die sich in Gegenwart von Kalium-Ionen zu einer Struktur mit einem würfelähnlichen Bereich anordnen. In dieser Konformation "greift" die "Hand" zu und hält das Thrombin fest. Zur Steuerung der Hand hängten die Wissenschaftler außerdem einen "Schalthebel" an, ebenfall ein kurzer DNA-Strang.

Und so funktioniert die Steuerung: Als "Handöffner" fungiert ein weiterer DNA-Strang, der komplementär, das heißt ein genaues Gegenstück zum Schalthebel und zu einem Teil der Hand ist. Wird dieser in die Lösung gegeben, lagert er sich an seinen Gegenpart an und löst dabei die Würfelkonformation auf – die Hand lässt das Thrombin-Molekül los.

Der Handöffner hat aber noch ein weiteres Stück DNA, das ungepaart geblieben ist. Hier kann nun ein zweiter DNA-Steuerstrang angreifen. Er bindet an den Handöffner und löst ihn von Hand und Schalthebel ab. Die Hand ist nun wieder frei, zum Würfel zu falten und Thrombin erneut zu binden.

"Unsere molekulare Maschine kann Thrombin viele Male binden und freigeben", sagt Simmel. "Sie erfüllt also die Funktion, die Thrombin-Konzentration in der Lösung zwischen einem niedrigen und einem höheren Niveau präzise zu steuern." Nach diesem Prinzip sollten sich weitere Nanomaschinen konstruieren lassen.

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.