Direkt zum Inhalt

Kosmologie: Schwarzes Loch beleuchtet kosmisches Netz

Den gängigen Vorstellungen der Kosmologen zufolge bildet die Materie im Weltall auf riesigen Größenskalen ein verzweigtes Netz von Filamenten aus Gas. Die große Mehrheit der Wasserstoffatome sind seit dem Urknall ein Teil dieses weitgehend unveränderten kosmischen Netzwerks. Jetzt ist Forschern der University of California at Santa Cruz und des Max-Planck-Instituts für Astronomie erstmals eine Aufnahme dieser kosmischen Filamentstruktur gelungen. Sie nutzten dafür die intensive Strahlung, die von einem supermassereichen Schwarzen Loch generiert wird und einen kleinen Teil des kosmischen Netzes hell erleuchtet.
Das kosmische Netzwerk

Computersimulationen sagen vorher, dass die allermeisten Atome im Universum auf Größenskalen von hunderten Millionen Lichtjahren und mehr eine Art Netzwerk aus Wasserstoffgas bilden, mit Filamenten, die an Knotenpunkten miteinander verbunden sind. Galaxien wie unsere Milchstraße entstehen in diesem Modell an genau solchen Knotenpunkten; Wasserstoffgas, das entlang der Filamente auf eine Galaxie fällt, ist eine wichtige Zutat für die Bildung neuer Sterne in solchen Galaxien. Direkt überprüfen ließ sich dieses Bild der großräumigen Struktur des Kosmos allerdings bislang nicht: Selbst an den dichtesten Knotenpunkten ist das Wasserstoffgas so extrem verdünnt, dass es kaum Licht von sich gibt und sich sogar mit den größten derzeit verfügbaren Teleskopen nicht nachweisen lässt.

Das kosmische Netzwerk | Der beobachtete Ausschnitt des kosmischen Netzwerks (türkisfarben) mit einer Ausdehnung von rund zwei Millionen Lichtjahren, der in der direkten Umgebung des Quasars UM 287 in der Bildmitte nachgewiesen wurde. Das Gas leuchtet auf Grund desselben Effekts, dem auch Leuchtstoffröhren ihr Licht verdanken. Dies ist das erste Bild eines Teils des kosmischen Netzwerks aus Gasfilamenten, das eine Schlüsselrolle für die Sternentstehung in Galaxien spielen dürfte.

Jetzt haben Astronomen erstmals ein direktes Bild eines Teilgebiets des kosmischen Netzwerks aufgenommen. Sie nutzten dabei den Umstand, dass so genannte Quasare wie kosmische Scheinwerfer wirken und nahegeliegene Gaswolken anstrahlen können. Das Kerngebiet einer Galaxie kann zwischenzeitlich zu einem Quasar werden, wenn Materie auf das zentrale, extrem massereiche Schwarze Loch der Galaxie fällt und dabei gewaltige Energien freisetzt. Die Wirtsgalaxie des Quasars sitzt – wie andere größere Galaxien auch – an einem der Knoten des kosmischen Netzwerks, und der Quasar kann dann die direkt umliegenden Gasfilamente anstrahlen.

Dabei kann es zum gleichen Effekt kommen, der auch das Gas in einer Leuchtstoffröhre zum Leuchten anregt: zur Fluoreszenz. Bei einer Leuchtstofflampe liefert der elektrische Strom die zur Anregung nötige Energie. In diesem astronomischen Beispiel ist es das intensive Licht des Quasars.

Sebastiano Cantalupo, der an der University of California/Santa Cruz forscht und Erstautor der jetzt veröffentlichten Studie ist, sagt: "Das Licht des Quasars ist wie der Strahl eines Scheinwerfers. In unserem Falle haben wir das Glück, dass dieser Scheinwerfer direkt auf ein Filament des kosmischen Netzwerks gerichtet ist und dessen Gas zum leuchten bringt." Mit Hilfe des Keck-I-Teleskops am W. M. Keck-Observatorium auf Hawaii (Spiegeldurchmesser: zehn Meter) und einem speziell angefertigten Filter konnten die Astronomen ein Bild des fluoreszierenden kosmischen Gases aufnehmen. Dessen Licht erreicht uns in einem ganz bestimmten, eng begrenzten Bereich des elektromagnetischen Spektrums – und der Filter lässt genau diese Art von Licht durch.

Computersimulation des kosmischen Netzwerks | Computersimulationen weisen auf die Existenz eines kosmischen Netzwerks aus Gasfilamenten auf Größenskalen von Millionen von Lichtjahren und mehr hin. Die Simulation im Hintergrund zeigt zwar nicht die Verteilung des Gases, aber die von Dunkler Materie, welche keinerlei Licht aussendet (Bolshoi-Simulation von Anatoly Klypin und Joel Primack). Diese Dunkle Materie bildet das Grundgerüst des kosmischen Netzwerks aus Gas. Das kleinere Bild zeigt einen stark vergrößerten Ausschnitt aus einem Teil des kosmischen Netzwerks. Der Durchmesser des Ausschnitts liegt bei zehn Millionen Lichtjahren; die entsprechende Simulation berücksichtigt zusätzlich zur Dunklen Materie auch das kosmische Gas (Simulation: S. Cantalupo). Die intensive Strahlung eines Quasars kann einen Teil des umgebenden kosmischen Netzwerks wie ein Scheinwerfer anstrahlen (dieser Teil ist im kleinen Bild hervorgehoben) und ein Filament des Gases zum Leuchten anregen. Genau das wurde im Fall des Quasars UM 287 beobachtet.

Das Wasserstoffgas in den weitgehend leeren Weiten zwischen den Galaxien haben Astronomen bereits seit Jahrzehnten auf eine andere, indirekte Weise untersucht. Die indirekte Messung erlaubte es allerdings nur, Eigenschaften desjenigen kosmischen Gases zu bestimmen, das sich entlang der Verbindungslinie zwischen einem fernen Hintergrund-Quasar und dem irdischen Beobachter befand. Solch ein eindimensionaler Ausschnitt reicht bei weitem nicht aus, um die gesamte dreidimensionale Struktur des Netzwerks sichtbar zu machen. Fabrizio Arrigoni Battaia, ein an der Forschung beteiligter Doktorand am Max-Planck-Institut für Astronomie, stellt im Kontrast dazu zu den neuen Ergebnissen fest: "Dies ist das erste Mal, dass es gelungen ist, ein Bild des kosmischen Netzes aufzunehmen, das dessen Filamentstruktur zeigt." Der Ausschnitt aus dem kosmischen Netzwerk aus Gas, der auf dem Bild zu sehen ist, misst im Durchmesser rund zwei Millionen Lichtjahre.

Mit Hilfe solcher Beobachtungen lassen sich die Ergebnisse von Supercomputer-Simulationen auf die Probe stellen, mit denen Kosmologen die Entstehung großräumiger Strukturen im Universum nachvollziehen. Tatsächlich gibt bereits die hier beschriebene Studie Hinweise darauf, dass diesen Simulationen wichtige Elemente fehlen dürften: Aufgrund der Beobachtungen lässt sich der Gehalt des kosmischen Netzwerks an kühlem Gas abschätzen – und das Ergebnis liegt deutlich über den Vorhersagen der Simulationen.

Joseph Hennawi, Gruppenleiter am Max-Planck-Institut für Astronomie, der an der Studie beteiligt war, sagt: "Wenn man verstehen will, wie Galaxien entstehen, dann muss man wissen, welches Rohmaterial sie für die Sternentstehung zur Verfügung haben – und dieses Rohmaterial beziehen die Galaxien aus dem riesigen kosmischen Netz aus Gasfilamenten. Die neuen Beobachtungen stellen unser Verständnis in dieser Hinsicht durchaus auf die Probe – sie legen nahe, dass eine Menge des Gases in Form kleiner, dichter Einzelwolken vorliegt; ein Umstand, den unsere Modelle derzeit noch nicht berücksichtigen. Wenn wir hier Klarheit schaffen können, verspricht das wichtige Erkenntnisse über die Galaxienevolution."

MPIA / Red.

  • Quellen
MPIA, 19. Januar 2014

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.