Exoplaneten: Subaru-Teleskop liefert Bild des "kalten Jupiter" GJ 504b
Bislang wissen die Astronomen um die Existenz von 930 Exoplaneten, also Planeten, die andere Sterne umkreisen als unsere Sonne. Fast alle diese Planeten konnten nur indirekt nachgewiesen werden: entweder durch ihre Gravitationswirkung auf ihre Heimatsterne oder weil sie regelmäßig einen winzigen Bruchteil des Sternlichts abschatten.
Hypothetischen außerirdischen Astronomen, die mit diesen indirekten Methoden unser eigenes Sonnensystem untersuchen, würden freilich wichtige Eigenschaften unserer kosmischen Nachbarschaft entgehen. Insbesondere dürften sie kaum etwas über die langsamen äußeren Planeten des Sonnensystems herausfinden. Umgekehrt müssen auch irdische Astronomen auf zusätzliche Methoden zurückgreifen, wenn sie um andere Sterne Planetensysteme ähnlich unserem eigenen untersuchen wollen. Eine wichtige Rolle spielen dabei direkte Abbildungen der Planeten solcher Systeme. Abbildungen können zudem Informationen über die Temperatur und einige Atmosphäreneigenschaften der beobachteten Planeten liefern. Ginge man noch einen Schritt weiter und nähme ein direktes Exoplaneten-Spektrum auf (ein Verfahren, das noch in den Kinderschuhen steckt), bekäme man sogar Informationen über die genauere chemische Zusammensetzung der Atmosphäre.
Aus diesem Grunde sind (irdische) Astronomen sehr interessiert daran, direkte Abbildungsverfahren für Exoplaneten weiterzuentwickeln – als wichtiges Werkzeug für den Nachweis und die Untersuchung ferner Planetensysteme, die unserem eigenen Sonnensystem ähneln.
Exoplaneten direkt abzubilden ist allerdings sehr schwierig. Sterne sind ungleich heller als ihre Planeten – typische Helligkeitsverhältnisse liegen bei eins zu einer Milliarde oder mehr. Bei herkömmlichen Beobachtungsmethoden wird ein Planet schlichtweg von seinem Heimatstern überstrahlt. Nur mit ausgefeilten technischen Tricks gelingt es überhaupt, die Planeten auf solchen Abbildungen sichtbar zu machen. Dazu gehören Verfahren, mit denen das Licht des Sterns mechanisch ausgeblendet wird (Koronografie) ebenso wie Analyseverfahren, die mehrere Bilder des untersuchten Planetensystems in gerade der richtigen Weise kombinieren, um Bildstörungen zu unterdrücken.
Nun ist es einer Astronomengruppe um Motohide Tamura (Japanisches Nationalobservatorium [NAOJ] und Universität Tokio), zu der auch mehrere Wissenschaftler des Max-Planck-Instituts für Astronomie gehören, gelungen, der Charakterisierung ferner Planetensysteme, die unserem eigenen ähneln, einen wichtigen Schritt näher zu kommen. Mit dem Subaru-Teleskop auf Hawaii konnten die Forscher Infrarotbilder des jupiterartigen Planeten GJ 405bb gewinnen, er den Stern GJ 405 umkreist, der sich rund 60 Lichtjahre von der Erde entfernt im Sternbild Jungfrau befindet. Der Abstand von GJ 405b zu seinem Stern beträgt das 44-fache des mittleren Abstands der Erde von der Sonne (44 AU). In unserem Sonnensystem entspräche dies dem anderthalbfachen Abstand des äußersten Planeten Neptun von der Sonne.
Dies ist die erste Abbildung eine Exoplaneten, der einen sonnenartigen Stern (Spektraltyp G) umkreist. Bisherige Planetenabbildungen waren nur um leuchtkräftigere Sterne gelungen. Deren Planeten sind im Mittel deutlich massereicher, heißer und damit einfacher aufzunehmen. Abschätzungen der Masse von GJ 405b beruhen auf Modellierungen des Abkühlungsprozesses des Planeten seit seiner Entstehung. Sie hängen daher vom Alter des Sterns und seiner Planeten ab. Diejenige Abschätzung, die von den meisten der beteiligten Forscher favorisiert wird, sieht GJ 405b auch als den masseärmsten der bis jetzt abgebildeten Exoplaneten.
Den Messungen nach ist GJ 405b auf alle Fälle der kälteste bislang abgebildete Planet. Da kältere Objekte mit Infrarotbildern schwieriger zu erfassen sind als heißere, ist dies ein wichtiger Schritt hin zur Abbildung von kühlen Objekten wie erdähnlichen oder noch kühleren Planeten in einem fernen Planetensystem.
Die Entdeckung gelang im Rahmen des SEEDS-Projekts ("Strategic Explorations of Exoplanets and Disks", zu deutsch etwa "Systematische Erkundungen von Exoplaneten und Scheiben"). Das SEEDS-Beobachtungsprogramm befindet sich derzeit gerade bei der Hälfte seiner Laufzeit. Bereits in dieser ersten Hälfte hat es beeindruckende Bilder zum einen von Exoplaneten geliefert, zum anderen von den Scheiben aus Gas und Staub, die junge Sterne umgeben und aus denen die Planeten dieser Sterne entstehen.
Das Max-Planck-Institut für Astronomie ist eines der Gründungsmitglieder der SEEDS-Durchmusterung. MPIA-Direktor Thomas Henning erklärt: "Wissenschaftler der Abteilung Stern- und Planetenentstehung des MPIA verfügen über einen großen Erfahrungsschatz in punkto Beobachtungsstrategien, Bildbearbeitung der für die Direktabbildungen nötigen Hochkontrastaufnahmen und Modellierung der physikalischen Eigenschaften von Exoplaneten. Daher waren wir ein naheliegender Partner für das SEEDS-Projekt – und wir freuen uns sehr, dass das Projekt in den letzten Jahren so gute Fortschritte gemacht hat!"
MPIA / Red.
Schreiben Sie uns!
Beitrag schreiben