News: Tanzende Moleküle auf Partnersuche
Viele biologische Prozesse sind Folge chemischer Reaktionen. Mithilfe eines Rastertunnelmikroskops konnten Forscher erstmals beobachten, wie sich komplexe Moleküle bilden. Nun können sie das Verhalten solcher Verbindungen sogar gezielt steuern.
Koordinationsverbindungen - das sind Verbindungen aus einem zentralem Übergangsmetallatom, um das sich ein Satz molekularer Liganden schart - sind heute von großem wissenschaftlichen Interesse. Sie spielen bei zahlreichen biologischen Prozessen eine wichtige Rolle und dienen der Erzeugung von neuartigen supramolekularen Werkstoffen. Jetzt ist es einer Forschergruppe am Stuttgarter Max-Planck-Institut für Festkörperforschung erstmals gelungen, die Bildung und das Verhalten einzelner Metall-Molekül-Komplexe direkt zu beobachten und zu steuern.
Mit der Entwicklung der Rastertunnelmikroskopie in den achtziger Jahren setzte eine radikale Änderung unseres Verhältnisses zur atomaren und molekularen Welt ein. Heute werden mit dieser Technik Moleküle und chemische Prozesse in situ - also auf einer Oberfläche - im atomaren Maßstab direkt verfolgt.
Darüber hinaus ist es möglich, auch die Translations- und Rotationsbewegungen einzelner Moleküle zu verfolgen. In jüngster Zeit gelang sogar die detaillierte Analyse von supramolekularen Verbindungen, in denen sich verschiedene molekulare Bausteine zu komplexen Einheiten organisieren. Grundlage all dieser komplexen Strukturen sind so genannte nichtkovalente chemische Bindungen, die auf anziehenden zwischenmolekularen Kräften beruhen, wie die Wasserstoff-Brückenbindung oder Metall-Liganden-Wechsel-wirkungen.
Die Max-Planck-Forscher brachten nun einen vergleichsweise einfachen molekularen Baustein - 1,3,5-Benzoltricarbonäure - auf ein Kupfersubstrat, um direkte Einblicke in die Entstehung von Koordinationsverbindungen an einer Oberfläche zu erhalten. Auf dem Substrat sind bei Raumtemperatur hochmobile einzelne Kupfer-Atome vorhanden, die mit den reaktiven tma-Liganden wechselwirken können.
Mithilfe eines Rastertunnelmikroskops gelang es Nian Lin und seinen Kollegen, die Bewegungen einzelner Moleküle zu verfolgen und zu beobachten, wie die rotierenden tma-Moleküle für einzelne Kupfer-Atome wie eine dynamische "Atomfalle" wirken. Die Forscher konnten auf diese Weise direkt verfolgen, wie sich kleeblattförmige Komplexe (Cu(tma)4) aus einem Kupfer-Atom und vier tma-Molekülen bilden und auch wieder zerfallen. Durch die Beobachtung einzelner Molekülkomplexe konnten sie belegen, dass die Lebensdauer dieser Verbindungen entscheidend von der jeweiligen lokalen chemischen Umgebung abhängt [1].
In einem zweiten Experiment gelang es Paolo Messina und seinen Kollegen, einen verwandten kleeblattförmigen Komplex aus Eisenatomen und tma-Molekülen gezielt zu synthetisieren, indem sie die beiden Reaktanten unter geeigneten Bedingungen wiederum auf ein Kupfersubstrat aufbrachten. Da in diesem Fall zwischen dem zentralen Eisen-Atom und den Carbonsäure-Liganden eine stärkere Wechselwirkung besteht, besitzt dieser Komplex eine größere thermische Stabilität, deutlich kürzere Bindungsabstände und eine andere Geometrie [2].
Bei einer detaillierten Analyse der Bindungen stellten die Stuttgarter Forscher fest, dass dieser metallorganische Komplex in zwei spiegelsymmetrischen Konfigurationen vorliegt, ähnlich der Spiegelsymmetrie zwischen unserer linken und rechten Hand. Dieses Phänomen wird in der Chemie als Chiralität (chiros, griech.: Hand) bezeichnet. Chirale Moleküle spielen insbesondere in der Biologie und Pharmakologie eine wichtige Rolle. Im vorliegenden Fall sind die gebildeten Fe(tma)4-Komplexe in zwei Dimensionen chiral, wobei das Eisen-Atom das so genannte chirale Zentrum bildet.
Die gezielte Verknüpfung von Metallatomen mit organischen Molekülen auf Oberflächen eröffnet vielfältige Perspektiven für Forschung und Anwendung. Zur Zeit arbeiten die Stuttgarter Forscher an der kontrollierten Synthese von räumlich geordneten Netzwerken von Eisen und organischen Liganden. Aufgrund der magnetischen Eigenschaften der eingebundenen Eisenatome sind diese Netzwerke beispielsweise auch von großem Interesse für magnetische Speichertechnologien.
Mit der Entwicklung der Rastertunnelmikroskopie in den achtziger Jahren setzte eine radikale Änderung unseres Verhältnisses zur atomaren und molekularen Welt ein. Heute werden mit dieser Technik Moleküle und chemische Prozesse in situ - also auf einer Oberfläche - im atomaren Maßstab direkt verfolgt.
Darüber hinaus ist es möglich, auch die Translations- und Rotationsbewegungen einzelner Moleküle zu verfolgen. In jüngster Zeit gelang sogar die detaillierte Analyse von supramolekularen Verbindungen, in denen sich verschiedene molekulare Bausteine zu komplexen Einheiten organisieren. Grundlage all dieser komplexen Strukturen sind so genannte nichtkovalente chemische Bindungen, die auf anziehenden zwischenmolekularen Kräften beruhen, wie die Wasserstoff-Brückenbindung oder Metall-Liganden-Wechsel-wirkungen.
Die Max-Planck-Forscher brachten nun einen vergleichsweise einfachen molekularen Baustein - 1,3,5-Benzoltricarbonäure - auf ein Kupfersubstrat, um direkte Einblicke in die Entstehung von Koordinationsverbindungen an einer Oberfläche zu erhalten. Auf dem Substrat sind bei Raumtemperatur hochmobile einzelne Kupfer-Atome vorhanden, die mit den reaktiven tma-Liganden wechselwirken können.
Mithilfe eines Rastertunnelmikroskops gelang es Nian Lin und seinen Kollegen, die Bewegungen einzelner Moleküle zu verfolgen und zu beobachten, wie die rotierenden tma-Moleküle für einzelne Kupfer-Atome wie eine dynamische "Atomfalle" wirken. Die Forscher konnten auf diese Weise direkt verfolgen, wie sich kleeblattförmige Komplexe (Cu(tma)4) aus einem Kupfer-Atom und vier tma-Molekülen bilden und auch wieder zerfallen. Durch die Beobachtung einzelner Molekülkomplexe konnten sie belegen, dass die Lebensdauer dieser Verbindungen entscheidend von der jeweiligen lokalen chemischen Umgebung abhängt [1].
In einem zweiten Experiment gelang es Paolo Messina und seinen Kollegen, einen verwandten kleeblattförmigen Komplex aus Eisenatomen und tma-Molekülen gezielt zu synthetisieren, indem sie die beiden Reaktanten unter geeigneten Bedingungen wiederum auf ein Kupfersubstrat aufbrachten. Da in diesem Fall zwischen dem zentralen Eisen-Atom und den Carbonsäure-Liganden eine stärkere Wechselwirkung besteht, besitzt dieser Komplex eine größere thermische Stabilität, deutlich kürzere Bindungsabstände und eine andere Geometrie [2].
Bei einer detaillierten Analyse der Bindungen stellten die Stuttgarter Forscher fest, dass dieser metallorganische Komplex in zwei spiegelsymmetrischen Konfigurationen vorliegt, ähnlich der Spiegelsymmetrie zwischen unserer linken und rechten Hand. Dieses Phänomen wird in der Chemie als Chiralität (chiros, griech.: Hand) bezeichnet. Chirale Moleküle spielen insbesondere in der Biologie und Pharmakologie eine wichtige Rolle. Im vorliegenden Fall sind die gebildeten Fe(tma)4-Komplexe in zwei Dimensionen chiral, wobei das Eisen-Atom das so genannte chirale Zentrum bildet.
Die gezielte Verknüpfung von Metallatomen mit organischen Molekülen auf Oberflächen eröffnet vielfältige Perspektiven für Forschung und Anwendung. Zur Zeit arbeiten die Stuttgarter Forscher an der kontrollierten Synthese von räumlich geordneten Netzwerken von Eisen und organischen Liganden. Aufgrund der magnetischen Eigenschaften der eingebundenen Eisenatome sind diese Netzwerke beispielsweise auch von großem Interesse für magnetische Speichertechnologien.
© Max-Planck-Gesellschaft
Die Max-Planck-Gesellschaft (MPG) ist eine vorwiegend von Bund und Ländern finanzierte Einrichtung der Grundlagenforschung. Sie betreibt rund achtzig Max-Planck-Institute.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.