Direkt zum Inhalt

Zellbiologie: Tauziehen in der Zelle

Leben bedeutet vor allem Logistik: Ständig müssen in den Zellen Nährstoffe, Werkzeuge und Informationen von einem Ort zum anderen gelangen. Wie sich nun zeigte, bewegen sich dabei zwei konkurrierende Motorteams wie beim Tauziehen in entgegengesetzte Richtungen. Das Gewinnerteam bestimmt nach dem ausgetragenem Wettstreit die Transportrichtung.
Tauziehen in der Zelle
Transportprozesse in den Zellen unseres Körpers ähneln dem Gütertransport auf der Straße. Dabei arbeiten molekulare Motoren, spezielle Eiweiß-Moleküle, als Lastwagen: Sie nehmen die zelluläre Fracht huckepack und transportieren diese entlang von Filamenten, den Straßen der Zellen. Allerdings sind die molekularen Transporter eine Milliarden Mal kleiner als Lastwagen, können sich je nach Transporter-Typ nur zum Anfang oder zum Ende des Filaments bewegen, müssen sich durch ein Gewusel kämpfen, das eher an eine überfüllte Fußgängerzone als eine Autobahn erinnert.

Am Transport einer Last sind immer mehrere Motoren beteiligt – zum Beispiel einige vom Kinesin-Typ und einige vom Dynein-Typ. Die Kinesin-Motoren laufen zu dem Ende des Filaments, das Biologen als Plus-Ende bezeichnen, die Dynein-Motoren zum Minus-Ende. In welche Richtung es dabei geht, sollte ein Koordinations-Apparat entscheiden, der immer nur ein Motorteam zulässt und jeweils zwischen dem einen und dem anderen Team umschaltet – so die Vermutung bislang.

Wie Wissenschaftler um Reinhard Lipowsky vom Potsdamer Max-Planck-Institut für Kolloid- und Grenzflächenforschung jetzt aber in einer Computer-Simulation herausgefunden haben, läuft das Ganze eher ab wie ein Tauziehen: Das stärkere Motoren-Team bestimmt, in welche Richtung eine Fracht wandert. Es setzt sich beim Tauziehen durch, indem es gegnerische Motoren vom Filament abreißt.

Der Stärkere gewinnt

"Das Tauziehen ist der einfachste vorstellbare Mechanismus", erklärt Erstautorin Melanie Müller. "Aber er hat es in sich, wenn man die experimentell gemessenen Eigenschaften der einzelnen Motoren berücksichtigt. Diese reagieren nämlich stark nichtlinear, wenn man an ihnen zieht."
"Das Tauziehen ist der einfachste vorstellbare Mechanismus"
(Melanie Müller)
Ein Motor des Verliererteams spürt eine starke Kraft und wird schnell vom Filament heruntergezogen. Die verbleibenden Motoren müssen dann die Zugkraft des Gewinnerteams allein aushalten und lösen sich noch schneller ab.

Dominoartig geben die Verlierermotoren auf und werden vom Filament gezogen, bis keiner mehr übrig ist. Das Gewinnerteam kann jetzt die Fracht schnell und ungehindert transportieren. "Allerdings überlässt die Zelle und Niederlage nicht dem Zufall, damit die Fracht auch an dem Ende der Straße ankommt, an dem sie gebraucht wird. "Da greifen wahrscheinlich Regulationsproteine ein", sagt Melanie Müller.

Ob ihr Modell vom Tauziehen der Wirklichkeit entspricht, überprüften die Forscher am Transport von Fetttröpfchen in Drosophila-Embryonen. Tatsächlich erklärt es die experimentellen Beobachtungen, die es teilweise auch schon vorher zum Transport-Mechanismus gab: Eine Fracht läuft auf einem Filament nicht schnurstracks von einem zum anderen Ende, vielmehr wird sie immer wieder auch in die Gegenrichtung gezogen. Die Verlierer-Motoren können die Gewinner-Motoren gelegentlich doch von der Filament-Straße abheben, weil der thermische Sturm die Gewinner-Motoren gelegentlich von der Straße bläst. Die Fracht-Teilchen bewegen sich auf diese Weise in beide Richtungen.

Zwei Fliegen mit einer Klappe

"Solch ein bidirektionaler Transportprozess ist sehr flexibel", erklärt Müller: Er kann die Richtung wechseln, wenn die Fracht am Ziel vorbeigelaufen ist, oder die Transportgeschwindigkeit ändern. Der Mechanismus des Tauziehens, bei dem das Gewinner-Team nicht nur die Last, sondern auch die gegnerische Motoren-Partei durch die Zelle zieht, löst zudem ein anderes logistisches Problem in der Zelle. Er bringt auch die Motoren immer zu dem Ende des Filaments, von dem aus sie loslaufen können und verhindert so, dass sich die Motoren eines Typs an ihrem jeweiligen Ziel stauen.

Tauziehen in der Zelle | Der Wettstreit molekularer Motoren: Eine blaue Fracht wird von zwei Motorteams transportiert, die entlang des gelben Filaments laufen. Das rote Motorteam zieht nach rechts zum Plus-Ende (+), das grüne nach links zum Minus-Ende (-). Wenn beide Teams ziehen (Mitte), behindern sie sich gegenseitig so stark, dass sich die Fracht kaum vorwärts bewegt. Gewinnt hingegen ein Team die Oberhand, geht es schnell voran, weil die gegnerischen Motoren vom Filament abgezogen werden.
"Trotz des einfachen Mechanismus zeigt ein Fracht-Teilchen, das durch zwei Motorenteams transportiert wird, ein sehr komplexes Motilitätsverhalten", sagt Müller. Es gibt sieben verschiedene Motilitätszustände. Das sind unterschiedliche Kombinationen aus Bewegungen zum Plus- und Minus-Ende sowie Pausen, zwischen denen das Fracht-Teilchen wechseln kann.

Die Wahrscheinlichkeiten für die Bewegung in eine bestimmte Richtung oder für den Stopp sowie die Zeiten zwischen zwei Richtungswechseln hängen stark von den Eigenschaften und der Anzahl der beteiligten Motoren ab. Dies nutzt die Zelle aus, um den Fracht-Transport zu steuern. Wird ein Motorteam stärker oder schneller angetrieben, bewegt sich die Fracht statt in die Plus- in die Minus-Richtung oder pausiert.

"Der einfache und effiziente Tauzieh-Mechanismus könnte für den Transport in Mikrolaboratorien auf Chips eingesetzt werden", meint Müller. Dem biologischen Vorbild entsprechend könnten Motorteams bestimmte Moleküle gezielt zu spezifischen Reaktionsorten auf dem Chip transportieren, und dann das Reaktionsprodukt wieder zurückbringen. "Unsere quantitative Tauzieh-Theorie ermöglicht es, die Motoreigenschaften für diesen Zweck zu optimieren", so Müller.

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.