Hirnforschung: Vergessen ist nicht verloren
Wissenschaftler beginnen zu verstehen, was im Gehirn passiert, wenn es lernt oder vergisst: Eine große Rolle spielen dabei Veränderungen der Kontakte zwischen Nervenzellen. Doch wie erklärt sich damit, dass es deutlich leichter ist, etwas Vergessenes wiederzuerlernen als etwas ganz neu zu lernen?
Anders als bei einem Insekt, das selbst beim zehnten Versuch wieder mit Schwung gegen die Fensterscheibe prallt, ist unser Gehirn in der Lage, sehr komplexe Zusammenhänge und motorische Abläufe zu lernen. Dies ermöglicht uns nicht nur das unfallfreie Vermeiden von Glastüren, sondern auch das Erlernen so verschiedener Dinge wie Fahrrad- oder Skifahren, das Sprechen verschiedener Sprachen, oder das Spielen eines Musikinstruments. Dabei lernt das jugendliche Gehirn leichter, doch die Fähigkeit zu lernen bleibt bis ins hohe Alter erhalten. Schon lange versuchen Wissenschaftler zu verstehen, was beim Lernen oder Vergessen im Gehirn vorgeht.
Flexible Informationsverbindungen
Lernen und Wiedererlernen – ein feiner Unterschied
Die Beobachtung, dass Lernen und Gedächtnis mit solchen Strukturveränderungen im Gehirn einhergehen, ist relativ neu, und viele Fragen sind noch offen. Was passiert zum Beispiel, wenn das Gehirn etwas lernt, es wieder vergisst und später noch einmal lernen muss? Die Erfahrung zeigt, dass einmal die einmal beherrschte Technik des Radfahrens sehr schnell auch dann wieder einfällt, wenn sie lange nicht geübt wurde. Auch bei anderen Dingen fällt ein "Wiederlernen" meist leichter als ein "Neulernen". Hat dieser feine Unterschied ebenfalls seinen Ursprung in der Struktur der Nervenzellen?
Zellfortsätze: "Was man hat, hat man"
Wissenschaftler des Max-Planck-Instituts für Neurobiologie um Mark Hübener konnten nun zeigen, dass es tatsächlich deutliche Unterschiede im Auswachsen von Zellkontakten gibt – je nachdem, ob eine Information neu oder erneut gelernt wird. So zeigten Nervenzellen, die für die Verarbeitung von visuellen Informationen zuständig sind, ein deutlich erhöhtes Auswachsen neuer Zellkontakte, wenn sie zeitweise keine Information mehr von "ihrem" Auge bekamen. Nach zirka fünf Tagen hatten sich die Nervenzellen soweit neu verbunden, dass sie nun auf Informationen aus dem anderen Auge reagieren konnten – das Gehirn hatte gelernt sich mit nur einem Auge zurechtzufinden. Kamen nun wieder Informationen von dem zwischenzeitlich inaktiven Auge, nahmen die Nervenzellen schnell ihre ursprüngliche Arbeit wieder auf und reagierten kaum mehr auf Signale aus dem anderen Auge.
"Völlig unerwartet war jedoch, dass ein Großteil der neu entstandenen Fortsätze bestehen blieb", erklärt Hübener. Alle Beobachtungen deuten darauf hin, dass häufig nur die Synapsen inaktiviert und somit die Informationsübertragungen unterbrochen werden. "Da eine einmal gemachte Erfahrung vielleicht später noch einmal gebraucht wird, scheint das Gehirn ein paar Fortsätze sozusagen 'auf Vorrat' zu behalten", so der Max-Planck-Forscher. Und tatsächlich: Wurde das gleiche Auge zu einem späteren Zeitpunkt noch einmal inaktiviert, verlief die Neuorganisation der Nervenzellen deutlich schneller – und das, obwohl keine neuen Fortsätze entstanden.
Nützliche Reaktivierung
Viele der einmal gebildeten Fortsätze zwischen Nervenzellen bleiben somit bestehen und erleichtern ein späteres Wiedererlernen. Eine bedeutende Erkenntnis zum Verständnis der grundlegenden Vorgänge beim Lernen und Erinnern. So stehen wir – wenn wir es einmal gelernt haben – auch nach vielen Jahren ohne Skifahren bereits nach kurzer Übungszeit wieder sicher auf den Brettern.
Flexible Informationsverbindungen
Um etwas zu lernen, also neue Informationen verarbeiten zu können, gehen Nervenzellen neue Verbindungen miteinander ein. Steht eine Information an, für die es noch keinen Verarbeitungsweg gibt, wachsen von der entsprechenden Nervenzelle feine Fortsätze auf ihre Nachbarzellen zu. Bildet sich am Ende eines Fortsatzes eine spezielle Kontaktstelle, eine Synapse, ist der Austausch von Informationen zwischen den Zellen möglich – die neue Information wird gelernt. Löst sich der Kontakt wieder auf, wird das Gelernte vergessen.
Lernen und Wiedererlernen – ein feiner Unterschied
Die Beobachtung, dass Lernen und Gedächtnis mit solchen Strukturveränderungen im Gehirn einhergehen, ist relativ neu, und viele Fragen sind noch offen. Was passiert zum Beispiel, wenn das Gehirn etwas lernt, es wieder vergisst und später noch einmal lernen muss? Die Erfahrung zeigt, dass einmal die einmal beherrschte Technik des Radfahrens sehr schnell auch dann wieder einfällt, wenn sie lange nicht geübt wurde. Auch bei anderen Dingen fällt ein "Wiederlernen" meist leichter als ein "Neulernen". Hat dieser feine Unterschied ebenfalls seinen Ursprung in der Struktur der Nervenzellen?
Zellfortsätze: "Was man hat, hat man"
Wissenschaftler des Max-Planck-Instituts für Neurobiologie um Mark Hübener konnten nun zeigen, dass es tatsächlich deutliche Unterschiede im Auswachsen von Zellkontakten gibt – je nachdem, ob eine Information neu oder erneut gelernt wird. So zeigten Nervenzellen, die für die Verarbeitung von visuellen Informationen zuständig sind, ein deutlich erhöhtes Auswachsen neuer Zellkontakte, wenn sie zeitweise keine Information mehr von "ihrem" Auge bekamen. Nach zirka fünf Tagen hatten sich die Nervenzellen soweit neu verbunden, dass sie nun auf Informationen aus dem anderen Auge reagieren konnten – das Gehirn hatte gelernt sich mit nur einem Auge zurechtzufinden. Kamen nun wieder Informationen von dem zwischenzeitlich inaktiven Auge, nahmen die Nervenzellen schnell ihre ursprüngliche Arbeit wieder auf und reagierten kaum mehr auf Signale aus dem anderen Auge.
"Völlig unerwartet war jedoch, dass ein Großteil der neu entstandenen Fortsätze bestehen blieb", erklärt Hübener. Alle Beobachtungen deuten darauf hin, dass häufig nur die Synapsen inaktiviert und somit die Informationsübertragungen unterbrochen werden. "Da eine einmal gemachte Erfahrung vielleicht später noch einmal gebraucht wird, scheint das Gehirn ein paar Fortsätze sozusagen 'auf Vorrat' zu behalten", so der Max-Planck-Forscher. Und tatsächlich: Wurde das gleiche Auge zu einem späteren Zeitpunkt noch einmal inaktiviert, verlief die Neuorganisation der Nervenzellen deutlich schneller – und das, obwohl keine neuen Fortsätze entstanden.
Nützliche Reaktivierung
Viele der einmal gebildeten Fortsätze zwischen Nervenzellen bleiben somit bestehen und erleichtern ein späteres Wiedererlernen. Eine bedeutende Erkenntnis zum Verständnis der grundlegenden Vorgänge beim Lernen und Erinnern. So stehen wir – wenn wir es einmal gelernt haben – auch nach vielen Jahren ohne Skifahren bereits nach kurzer Übungszeit wieder sicher auf den Brettern.
© Max-Planck-Gesellschaft
Die Max-Planck-Gesellschaft (MPG) ist eine vorwiegend von Bund und Ländern finanzierte Einrichtung der Grundlagenforschung. Sie betreibt rund achtzig Max-Planck-Institute.
Schreiben Sie uns!
Beitrag schreiben