Modellansatz: Emmy Noether
Gudrun war im Dezember 2018 wieder zu Gast an der FU in Berlin. Schon zum dritten Mal ist Mechthild Koreuber ihre Gesprächspartnerin für den Podcast Modellansatz. Der Anlass des Gespräches war, dass im November 2018 unter dem Schlagwort Noethember die Mathematikerin Emmy Noether in den Fokus gerückt wurde. Auf unterschiedlichen Plattformen und in vielseitigen Formaten wurden die einzelnen Tage eines ganzen Monats der Darstellung ihres Lebens und Werks gewidmet. Für jeden Tag gab es Vorschläge für einzelne Stationen und Aspekte ihres Lebens, die in unterschiedlicher Art und Weise aufgenommen und dargestellt wurden. Unser Episodenbild entstand auch im Rahmen dieser Aktion und wurde uns von Constanza Rojas-Molina zur Verfügung gestellt.
Unser Podcast hat im Dezember etwas verspätet auch zum Noethember beigetragen. Die Veröffentlichung des zweiten der beiden aufgezeichneten Emmy-Noether-Gespräche hat nun einige Monate Abstand zum November 2018. Das hat einen guten Grund: im Gespräch geht es neben der Person Emmy Noether auch um die Idee einer Konferenz aus Anlass des 100. Jahrestages ihrer Habilitation. Die Details der Konferenz waren im Gespräch noch etwas vage, aber die im Dezember gemachten Pläne werden Anfang Juni in Berlin tatsächlich Realität. Für diesen Teil des Gespräches stieß Rupert Klein dazu.
Gudrun hatte sich im Rahmen des Noethember an Mechthild Koreuber gewandt, weil diese ein Buch über Emmy Noether und ihre Schule geschrieben hat, das 2015 im Springer Verlag erschienen ist. Schon beim ersten Gespräch zu Gender und Mathematik entstand der Plan, später eine Folge zu der Seite von Emmy Noether zu führen, die im Buch dargestellt wird. Nun gab es dafür zwei konkrete Anlässe, den Plan zu realisieren.
Was hat Mechthild so sehr an der Person Noethers fasziniert, dass sie sich viele Jahre mit der Person und der daraus entstandenen Schule beschäftigt hat neben ihren anderen beruflichen Aufgaben? Dabei hatte sie erst sehr spät im Mathematikstudium den Namen Emmy Noether zum ersten mal gehört. Schon damals faszinierte sie der Widerspruch zwischen der Leistung der Pionierin und ihrer Anziehungskraft auf den mathematischen Nachwuchs zur eigenen prekären Stellung im Wissenschaftsbetrieb und ihrer Außenseiterrolle als Frau. Sie wollte ergründen, woher das starkes Streben nach Wissen und dem Verbleiben in der Mathematik unter schwierigsten Bedingungen kam.
Der sehr berühmte und gestandene Kollege Hermann Weyl sagte selbst "Sie war mir intellektuell überlegen".
Am Beispiel Emmy Noethers schärft sich die Frage danach: was ist mathematische Produktivität, unter welchen Rahmenbedingungen kann sie entstehen, unterschiedliche Felder verbinden und ganz neue Theorierahmen für Mathematik entwickeln. Warum ist gerade Emmy Noether das gelungen? Im Umfeld von Noether gibt es weitere sehr interessante Frauen, die heute größtenteils fast vergessen sind wie Marie-Louise Dubreil-Jacotin, die erste französische Mathematikprofessorin. Sie war Schülerin bei Emmy Noether in Frankfurt am Main und Göttingen. Außerdem eine türkische Mathematikerin, die nach Deutschland kam um mit diesen Frauen zu arbeiten.
Es entsteht der Verdacht, dass sie als Außenseiterin im Feld der Wissenschaft tradierte Denkmuster nicht so leicht übernahm, weil sie auf ihrem eigenen Weg in die Wissenschaft ständig
Grenzen überschreiten musste. Um überhaupt Mathematik betreiben zu können, musste sie sich einen Platz definieren und erkämpfen, den es so noch nicht gab.
So konnte sie sogar in Feldern der Mathematik, in denen sie selbst nicht geforscht hat, revolutionäre Ideen einbringen. Beispiel hierfür ist die Topologie in Göttingen vertreten durch Brower und Alexandrow. Hier schuf sie die Betti Zahlen und lieferte den Kern für ein ganz neue Feld: Algebraische Topologie.
Sie lebte den Zusammenstoß von Denkstilen und eröffnete sich und anderen damit einen Raum für Kreativität. Davon möchten wir auch heute lernen. Unter den heutigen Bedingungen wäre es wichtig, mehr Brücken zu schlagen und Kreativität zu leben, die Wissensvorstellung verändern darf. Der Trend ist aber eher Kontrolle und Quantifizierung. Ein Ausweg aus diesem engen Korsett ist in Berlin der 2018 gegründete Mathematik-Cluster MATH+. Die Idee dahinter ist es, Mathematik in einen viel breiteren Kontext als Technik und Ökonomie zu setzen.
Dieses interdisziplinäre Gespräch wird auch die Noether Tagung möglich machen und insbesondere auch Wissenschaftsgeschichte sowie marginalisierte Perspektiven einbeziehen.
Dialogisches Arbeiten zwischen Mathematik und anderen Disziplinen soll in der Konferenz exemplarisch abgebildet und gelebt werden.
Für die Öffentlichkeit wird ein Theaterstück geschrieben und aufgeführt, das Mathematik ernst nehmen wird. Die Hoffnung der Organisator_innen ist, dass Personen, die skeptisch zu einer Sitzung der Konferenz gehen, begeistert wieder gehen.
Rupert Klein ist in seinen Worten ein "sehr angewandter Mathematiker", Er hat Maschinenbau studiert und in Potsdam Klimafolgeforschung betrieben. Inzwischen ist er an der FU in der Mathematik und arbeitet im SFB Skalenkaskaden mit Lebenswissenschaftlern und Physikern zusammen. Er ist im Vorstand des Mathe Clusters MATH+ und beteiligt am Schwerpunkt: Emerging Field: Concepts of Change.
Podcasts
- M. Pössel, G. Thäter: Noether-Theorem, Gespräch im Modellansatz Podcast, Folge 192, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.
- A. Mischau, M. Koreuber, G. Thäter: Gender und Mathematik, Gespräch im Modellansatz Podcast, Folge 142, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017.
- In our time: Emmy Noether – M. Bragg and guests. BBC Radio 3, Sendung vom 24.01.2019 (archiviert)
Literatur und weiterführende Informationen
- M. Koreuber: Emmy Noether, die Noether-Schule und die moderne Algebra. Zur Geschichte einer kulturellen Bewegung, Heidelberg: Springer, 2015.
- James W. Brewer and Martha K. Smith (eds.), Emmy Noether: A Tribute to Her Life and Work Marcel Dekker, 1981.
- Auguste Dick (trans. H. I. Blocher), Emmy Noether 1882-1935 Birkhäuser, 1981.
- Israel Kleiner, A History of Abstract Algebra Birkhäuser, 2007.
- Yvette Kosmann-Schwarzbach (trans. Bertram E. Schwarzbach), The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century Springer, 2010.
- Leon M. Lederman and Christopher T. Hill, Symmetry and the Beautiful Universe Prometheus Books, 2008.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.