Direkt zum Inhalt

Ein Parallelogramm aus doppeltem Viereck

Viereck

Zeigen Sie bitte: Aus zwei deckungsgleichen konvexen Vierecken kann man ein Parallelogramm legen, indem man die beiden Vierecke jeweils entlang einer Diagonalen teilt.

Legen Sie die beiden deckungsgleichen Vierecke in die Punktsymmetrie-Position bezüglich einer Seitenmitte.

Das ursprüngliche Viereck ist hier kräftig rot und blau gefärbt, orange und dunkelgrün ist sein deckungsgleiches Punkt-Spiegelbild (das ursprüngliche Viereck ist also nicht umgeklappt, sondern um 180 Grad um den Mittelpunkt seiner "Unterkante" gedreht worden). Verschiebt man das dunkelgrüne Dreieck in die hellgrüne Position und das dunkelblaue in die hellblaue, so bekommt man das gewünschte Parallelogramm, dessen Seiten die Diagonalen des gegebenen Vierecks sind.

  • Quellen
Nach Aufgabe 8 auf Seite 116 in Honsbergers Chestnuts stammt die Aufgabe von V. Proizvolov, Quantum B62, Sept/Okt.1992, 31.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.