Hemmes mathematische Rätsel: Wie muss man die Zahlen von 1 bis 9 verteilen?
Der 1996 gegründete United Kingdom Mathematics Trust (UKMT) organisiert eine Reihe von Mathematikwettbewerben. 2018 gab der UKMT die Aufgabensammlung »The Ultimate Mathematical Challenge« heraus. Das heutige Rätsel ist eine von mehreren hundert Aufgaben des Buchs.
Verteilen Sie die Ziffern von 1 bis 9 so auf die neun Felder eines Quadrates, dass die drei dreistelligen Zahlen in den Zeilen, von links nach rechts gelesen, Vielfache von 21 sind und die drei dreistelligen Zahlen in den Spalten, von oben nach unten gelesen, Vielfache von 12 sind.
Die Zeilen sind Vielfache von 21 und damit auch von 3. Folglich muss die Summe der Ziffern jeder Zeile durch 3 teilbar sein. Die Spalten sind Vielfache von 12 und endet darum mit geraden Ziffern. Somit können in der untersten Zeile ausschließlich gerade Ziffern stehen. Es kommen dadurch für diese Zeile nur die Zahlen 246, 264, 426, 462, 624, 642, 468, 486, 648, 684, 846 und 864 in Frage. Nur 462 ist davon ein Vielfaches von 21 und steht darum in der letzten Zeile.
Die Spalten sind Vielfache von 12 und damit auch von 4. Somit müssen die Zahlen, die von den jeweils letzten beiden Ziffern jeder Spalte gebildet werden, durch 4 teilbar sein. Bei der ersten Spalte ist dies mit den noch zur Verfügung stehenden Ziffern nur mit 84 möglich. Die mittlere Zeile beginnt darum mit 8. Das einzige Vielfache von 21 in dieser Zeile mit den noch verbliebenen Ziffern ist 819. Daraus ergibt sich auch sofort für die erste Zeile 357.
Schreiben Sie uns!
Beitrag schreiben