Direkt zum Inhalt

Lexikon der Mathematik: Baire-Raum

topologischer Raum mit speziellen Eigenschaften.

Ein topologischer Raum V heißt Baire-Raum, wenn jede nicht-leere offene Teilmenge von V von zweiter Kategorie ist. Dazu äquivalent ist die Bedingung, daß jede Folge (Fn) von abgeschlossenen Mengen, deren Vereinigungsmenge wenigstens einen inneren Punkt besitzt, mindestens eine Menge Fm aufweist, die selbst einen inneren Punkt besitzt.

Nach dem Baireschen Kategoriensatz ist beispielsweise jeder vollständige metrische Raum ein Baire-Raum ( Baire-σ-Algebra).

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.