Direkt zum Inhalt

Lexikon der Mathematik: Energiefunktional

im Kontext Neuronale Netze ein vom jeweiligen Netz abhängiges und auf dem Raum der Ein- und Ausgabewerte erklärtes Funktional, welches in vielen Fällen im Ausführ-Modus bei sich ändernden Netzzuständen abnimmt.

Häufig wird das Energiefunktional herangezogen um nachzuweisen, daß das jeweilige Netz im Ausführ-Modus nach endlich vielen Iterationen in einen sogenannten stabilen Zustand übergeht (vgl. z.B. bidirektionaler assoziativer Speicher oder Hopfield-Netz).

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.