Direkt zum Inhalt

Lexikon der Mathematik: induzierte Verknüpfung

gängige Bezeichnung für eine Verknüpfung, die man durch Einschränken des Definitionsbereiches einer gegebenen Verknüpfung erhält.

Ist * eine Verknüpfung auf der Menge M, d. h. eine Abbildung von M × M in M, und liegt für zwei Elemente m1, m2M′ aus einer nicht-leeren Teilmenge M′ ⊆ M auch stets das Element m1 * m2 in M′, d.h. ist M′ abgeschlossen bzgl. *, so induziert * eine Verknüpfung auf M′. Diese induzierte Verknüpfung wird dann meist mit demselben Symbol bezeichnet.

Ist beispielsweise U eine Teilmenge des \(\begin{eqnarray}{\mathbb{K}}\end{eqnarray}\)-Vektorraumes (V, +, ·), induziert + eine Verknüpfung auf der nicht-leeren Teilmenge UV, und liegt mit uU und \(\begin{eqnarray}\alpha \in {\mathbb{K}}\end{eqnarray}\) auch stets αu in U, so bildet (U, +, ·) einen Unterraum von V.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.