Direkt zum Inhalt

Lexikon der Mathematik: mikrolokale Analysis

die Untersuchung von Eigenschaften von Funktionen, Distributionen und Operatoren im „mikrolokalen Bereich“.

Dies bedeutet, daß diese Objekte vermöge Methoden der Fourier-Analysis im Phasenraum aufgelöst werden, also als Objekte der Variablen x und ξ des Kotangentialbündels einer Mannigfaltigkeit X aufgefaßt werden. Aufgrund der Unschärferelation ist diese Untersuchung jedoch nur modulo regulärer,d. h. glatter, Funktionen, Operatoren usw. möglich; dennoch erhält man in vielen Fällen Aussagen über interessante Eigenschaften dieser Objekte. In der Physik finden Methoden der mikrolokalen Analysis Anwendung in der Semiklassik, bei der z. B. der Übergang von quantenmechanischen zu klassischen Systemen studiert wird.

[1] Kashwara, M.: Systems of Microdifferential Equations. Birkhäuser, 1983.

[2] Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudodifferential equations. Sprinter Lecture Notes in Mathematics, 1973.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.