Lexikon der Mathematik: Penrose-Parkettierung
Penrose-Pflasterung, ein in den 70er Jahren des zwanzigsten Jahrhunderts von Roger Penrose entdeckter Typus von Pflasterungen der Ebene, die aus nur zwei verschiedenen elementaren Figuren (F1, F2) bestehen.
Die genauen Eigenschaften einer Penrose-Parkettierung sind:
- Die Ebene kann auf unendlich viele verschiedene Arten durch unendlich viele Kopien von (F1, F2) parkettiert werden. Eine Parkettierung ist hierbei eine Überdeckung ohne Überlappungen und Lücken.
- Die Parkettierungen sind nicht periodisch.
- Jeder (endliche) Teil einer Penrose-Parkettierung kommt innnerhalb der Gesamtparkettierung unendlich oft vor.
Die vermutlich einfachste Penrose-Parkettierung wird erzeugt durch die beiden in der Abbildung gezeigten Rhomben; man beachte, daß alle Seitenlängen gleich sind.
[1] Penrose, R.: Pentaplexity. Mathematical Inteligencer 2, 1979.
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.