Extrasolare Planeten: Exoplaneten auf schiefen Bahnen
Geneigte Bahnen in extrasolaren Planetensystemen sind ganz und gar nicht selten, sondern scheinen geradezu typisch zu sein für Exoplaneten – die Planeten außerhalb unseres Sonnensystems. Dies brachte ein von den Astronomen der Universität Tokio und des "National Astronomical Observatory of Japan" (NAOJ) angeführtes Forscherteam ans Tageslicht. Die neuen Beobachtungen mit dem japanischen Subaru-Teleskop liefern wichtige Hinweise, um anhand verschiedener theoretischer Modelle zu untersuchen, wie sich die Planetenbahnen entwickelt haben.
Seit der Entdeckung des ersten extrasolaren Planeten im Jahr 1995 haben Wissenschaftler mehr als 500 Exoplaneten identifiziert, darunter fast ausschließlich große Gasplaneten. Die meisten dieser extrasolaren Gasriesen umrunden ihr Zentralgestirn in engen Bahnen. Jupiter und die übrigen Gasplaneten des Sonnensystems hingegen ziehen ihre Bahn um die Sonne in einiger Entfernung. Breit akzeptierte Theorien nehmen an, dass die extrasolaren Gasriesen aus ergiebigem Material weit entfernt vom Zentralstern entstanden und erst danach zu ihren gegenwärtigen Positionen wanderten. Verschiedene Migrationsprozesse wurden vorgeschlagen, um die sternnahen Bahnen der Exoplaneten und ihre Bahnneigung gegen den Sternäquator zu erklären.
Migrierende Gasriesen
Wechselwirkungen zwischen zwei Gasriesen während ihrer Entstehung, einschließlich Streuung aufgrund ihres gegenseitigen gravitativen Einflusses, könnten schiefe Planetenbahnen hervorrufen. Auch die langfristige Gravitationswirkung zwischen einem inneren Gasplaneten und einem weiteren Himmelsobjekt wie einem Begleitstern oder einem äußeren Gasriesen vermag im Lauf der Zeit die Umlaufbahn zu verändern und einen inneren Planeten dem Stern im Zentrum noch weiter anzunähern. Dieser Prozess ist als Kozai-Migration bekannt.
Die Neigung der Bahnachse von inneren Exoplaneten auf engen Umlaufbahnen relativ zur Rotationsachse des Zentralsterns hat sich zu einer wichtigen Beobachtungsmessgröße entwickelt. Migrationsmodelle, auf die sich die Theorien der Bahnentwicklung von Planeten stützen, lassen sich mittels der Messungen von Bahnneigungen unterstützen oder auch gänzlich verwerfen. Das japanische Forscherteam konzentrierte seine Beobachtungen mit dem Subaru-Teleskop darauf, die Schiefe der Bahn für zwei extrasolare Systeme, die nachweislich einen Planeten besitzen, zu untersuchen: HAT-P-11 und XO-4. Um die Bahnneigung zu bestimmen, maß die Gruppe den Rossiter-McLaughlin-Effekt (RM-Effekt) der beiden Systeme.
Der RM-Effekt ruft Unregelmäßigkeiten in der Radialgeschwindigkeit des Zentralsterns hervor, sobald ein Planet in der Sichtlinie des Beobachters vor dem Stern vorbeizieht. Die Schiefe der Planetenbahn lässt sich aus den Messdaten des RM-Effekts extrahieren. Die Messung des RM-Effekts für die Systeme HAT-P-11 und XO-4 ergab, dass die Bahnachsen der Planeten HAT-P-11 b und XO-4 b relativ zur Rotationsachse des Zentralsterns geneigt sind. Der Planet XO-4 b hat eine Masse in der Größenordnung von Jupiter. HAT-P-11 b hingegen gehört zu den kleinsten bisher entdeckten Exoplaneten.
Es ist das erste Mal, dass Forscher den Neigungswinkel für einen kleinen Planeten wie HAT-P-11 b messen konnten. Die Bahnachse dieses Exoplaneten ist zur Rotationsachse des Zentralgestirns um 103 Grad geneigt, sodass der Planet den Stern in retrograder Richtung umläuft. Der Nachweis des RM-Effekts für kleinere Planeten erfordert empfindlichere Detektoren, da das Signal proportional zur Größe des Planeten skaliert ist; je kleiner der vorbeiziehende Planet, desto schwächer ist das Signal. In näherer Zukunft sollen die fortlaufenden Beobachtungen extrasolarer Systeme mit Planeten zu einem besseren Verständnis der Entstehungs- und Migrationsgeschichte der Planetensysteme beitragen.
Rahel Heule
Schreiben Sie uns!
1 Beitrag anzeigen