Direkt zum Inhalt

Die wollen nur spielen

Einen lehrreichen und umfassenden Überblick über Spiele, Rätsel und Zahlen bieten die beiden Mathematiker Ingo Althöfer und Roland Voigt im vorliegenden Werk. In insgesamt sechzehn Kapiteln behandeln sie Sudokus, lateinische Quadrate, Yavalath und etliche weitere Kopfnüsse. Die Autoren beleuchten akribisch die geschichtliche Entwicklung solcher Spiele und Rätsel und arbeiten den Bezug zur Mathematik detailliert heraus. Dabei schlagen sie viele Brücken zu aktuellen Forschungsthemen.

Althöfer und Voigt eröffnen ihren Lesern überraschende Einsichten, etwa wenn sie das altbekannte Mühle-Spiel aus logischer Perspektive heraus betrachten. Neben dem Basisspiel stellen sie eine Reihe alternativer Varianten vor. Lasker-Mühle beispielsweise wird mit zehn Steinen bestritten, und zwar ohne getrennte Spielphasen. Die Autoren vergleichen die verschiedenen Abwandlungen mit dem Basisspiel, unter anderem hinsichtlich der dabei auftretenden Wahrscheinlichkeiten bestimmter Spielereignisse, und probieren sich an eigenen Varianten.

Dem Thema Sudoku widmen sie ganze drei Kapitel. Der Leser lernt hier einiges über Lösungsmöglichkeiten, die von "Naked Singles" (eindeutig identifizierbaren Ziffern) bis hin zu komplexeren Verfahren wie dem "Jellyfish" reichen. Bei dieser Technik betrachtet der Spieler vier Zeilen und vier Spalten gemeinsam, um gleiche Ziffern zu identifizieren.

Bunte Flecken auf der Karte

Einen großen Raum in dem Buch nehmen logische Rätsel ein. Althöfer und Voigt beschreiben beispielsweise die Vierfarbenvermutung. Sie geht auf den Mathematiker Francis Guthrie (1831-1899) zurück, der 1852 versuchte, Grafschaften in England auf einer Landkarte so zu kolorieren, dass keine gleichfarbigen aneinandergrenzen. Er postulierte, dass hierfür nur vier Farben notwendig seien. Den (Computer-)Beweis erbrachten mehr als einhundert Jahre später die Mathematiker Kenneth Appel und Wolfgang Haken, indem sie rechnergestützt die Zahl der problematischen Fälle auf eine überschaubare Zahl reduzierten und anschließend einzeln prüften. Ein elementarer Beweis, der unmittelbar von Menschen nachvollzogen werden kann, steht allerdings noch aus.

Das Autorenduo nutzt die Vierfarbenvermutung, um den Leser in die Graphentheorie einzuführen, ein Teilgebiet der Mathematik. Diese hilft beim Lösen des Farbenproblems, aber auch bei vielen anderen logischen Rätseln. Mathematisch sauber und sprachlich gewandt erörtern Althöfer und Voigt die Grundlagen dieser Theorie.

Am Ende des Buches zeigen sie verschiedene alltagsnahe Anwendungen des 4-Quadrate-Satzes von Langrange. Dieser besagt, dass sich jede natürliche Zahl als Summe von höchstens vier Quadratzahlen hinschreiben lässt. Anhand von Beispielen versinnbildlichen die Autoren den Satz und führen gut verständlich in die Zahlentheorie ein.

"Spiele, Rätsel, Zahlen" ist gut recherchiert und überzeugt mit klug gewählten Beispielen. Althöfer und Voigt wenden sich mit klarer, verständlicher Sprache an ihre Leser und erreichen dabei auch Laien. Hin und wieder sind ihre Ausführungen etwas zu detailliert, doch das schmälert den guten Gesamteindruck kaum.

Kennen Sie schon …

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Spektrum - Die Woche – Süßes Gift?

Entdecken Sie die Vorteile und Risiken einer zuckerfreien Ernährung in unserem Artikel »Süßes Gift«. Plus: Erfahren Sie in unserer Kolumne, warum im amerikanischen Wahlsystem nicht immer die Partei mit den meisten Stimmen gewinnt. Jetzt mehr erfahren!

Spektrum der Wissenschaft – Formen der Mathematik

Die Mathematik ist ein erstaunlich vielfältiges Fach und zeigt sich in den verschiedensten Formen: Lesen Sie von den bunten Fraktalen der Mandelbrotmenge, einer Einstein-Kachel, die den Boden mit erstaunlichen, lückenlosen Mustern versieht oder den Falten eines zerknitterten Papiers. Diese unterschiedlichen Strukturen bergen spannende mathematische Eigenschaften, die Fachleute in den letzten Jahren entdeckt und zum Staunen gebracht haben. Darüber hinaus stellen wir die Frage, warum Kieselsteine oval sind und zeigen Ihnen, nach welchen Regeln die faszinierenden Sandzeichnungen auf dem südpazifischen Archipel Vanuatu entstehen.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.