Lexikon der Mathematik: Anisotropie
Eigenschaft eines Teilraums U eines Vektorraums V. Man nennt U anisotrop bezüglich einer auf V hermiteschen Form f, sofern in U keine bezüglich f isotropen Vektoren existieren.
In anderem Zusammenhang auch eine Eigenschaft elliptischer partieller Differentialgleichungen, die sich auf die aus einer schwachen Formulierung resultierende Bilinearform a bezieht. Lautet diese Bilinearform beispielsweise
mit
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.