Direkt zum Inhalt

Lexikon der Mathematik: Mantellinie

die geradlinige Erzeugende einer allgemeinen Zylinder- oder Kegelfläche.

Allgemeine Zylinder- oder Kegelflächen sind spezielle Regelflächen mit einer Parametrisierung der Gestalt \({\rm{\Phi }}(u,v)=\alpha (u)+v{\overrightarrow{a}}_{0}\) bzw. ̦(u, v) = P0 + v γ(u), wobei P0 ∈ ℝ3 ein fester Punkt, \({\overrightarrow{a}}_{0}\in {{\mathbb{R}}}^{3}\) ein fester Vektor, und α und γ beliebige Raumkurven sind. In beiden Fällen sind die Parameterlinien u = const Geraden, die Mantellinien des Kegels bzw. Zylinders.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.