Direkt zum Inhalt

Lexikon der Mathematik: Martinsches Axiom

MA, von ZFC unabhängiges Axiom der axiomatischen Mengenlehre, das besagt, daß es für jede Kardinalzahl κ < 2w, jede nichtleere Partialordnung P, für welche die abzählbare Kettenbedingung gilt, und jede Menge \({\mathscr{D}}\) von dichten Teilmengen von P mit \(\#{\mathscr{D}}\le \kappa \) einen Filter FP auf P gibt, der mit jeder Menge aus \({\mathscr{D}}\) einen nichtleeren Schnitt hat, d. h., so daß gilt, DF ≠ ∅ für alle \(D\in {\mathscr{D}}\).

Siehe auch Kardinalzahlen und Ordinalzahlen, Ordnungsrelation.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.