Immunsystem: Poren des guten Todes
Unsere Körperabwehr wird fast ständig von außen bedroht und wehrt sich mit spezialisierte Zellen des Immunsystems. Zu deren Waffen gehören auch kleine Moleküle, die kranke Zellen zum selbstlosen Selbstmord zwingen. Auf welchem Weg diese Moleküle genau an ihren Einsatzort kommen war bisher allerdings nicht ganz klar.
Während des alltäglichen Lebens wird uns nur selten bewusst, welche Kämpfe im eigenen Körper stattfinden. Nahezu kontinuierlich muss sich der Körper gegen unzählige Krankheitserreger wehren. Mit jedem Liter Blut, der durch unseren Körper gepumpt wird, werden daher bis zu fünf Milliarden weiße Blutkörperchen auf Patrouille geschickt. Ein Teil dieser Zellen reagiert auf Krankheitserreger mit der Produktion von Antikörpern, die exakt auf den erkannten Erreger zugeschnitten sind und diesen präzise angreifen. Gleichzeitig lassen sie Gedächtniszellen entstehen, die diesen Erreger bei einem erneuten Angriff wiedererkennen.
Neben diesen Taktikern unter den weißen Blutkörperchen gibt es eine zweite Gruppe von Zellen, die ohne große Umschweife gleich zum Angriff übergeht: T- und Killer-Zellen haben sich auf Virus-infizierte Körperzellen und Tumorzellen spezialisiert – hier ist ein sofortiges Handeln besonders wichtig. Doch ganz ohne Taktik geht es auch bei diesen Angriffszellen nicht. Denn zunächst müssen die Waffen dieser Zellen, die sogenannten Granzyme, in die kranke Zelle eingeschleust werden. Erst dort entfalten sie ihre Wirkung: Sie manipulieren die schädliche Zelle so, dass sie ihr eingebautes Selbstmordprogramm aktiviert. Doch wie kommen die Granzyme in die Zelle?
Die Frage, welcher Weg die tödliche Menge Granzyme in eine Zelle bringt, ist nicht trivial. Mit diesem Wissen könnten neue Therapien zur Virus- und Krebsbekämpfung entwickelt werden. Nach zwanzig Jahren scheinen Wissenschaftler des Max-Planck-Instituts für Neurobiologie diese Frage nun geklärt zu haben: Entgegen der gängigen Meinung sind offenbar tatsächlich die Membranlöcher die Haupteintrittspforte für Granzyme. Den Beweis erbrachten die Wissenschaftler mit künstlich veränderten Granzymen, die nicht mehr an Membranen binden und somit nicht via Membrantransport in die Zelle gelangen können. "Interessanterweise war trotz dieser Einschränkung keine verminderte Effektivität der Angriffszellen festzustellen", erklärt Dieter Jenne. "Wir konnten außerdem zeigen, dass die Poren groß genug sind, um genügend Granzyme in die Zelle zu lassen, bevor diese die Löcher wieder abdichten kann."
Neben diesen Taktikern unter den weißen Blutkörperchen gibt es eine zweite Gruppe von Zellen, die ohne große Umschweife gleich zum Angriff übergeht: T- und Killer-Zellen haben sich auf Virus-infizierte Körperzellen und Tumorzellen spezialisiert – hier ist ein sofortiges Handeln besonders wichtig. Doch ganz ohne Taktik geht es auch bei diesen Angriffszellen nicht. Denn zunächst müssen die Waffen dieser Zellen, die sogenannten Granzyme, in die kranke Zelle eingeschleust werden. Erst dort entfalten sie ihre Wirkung: Sie manipulieren die schädliche Zelle so, dass sie ihr eingebautes Selbstmordprogramm aktiviert. Doch wie kommen die Granzyme in die Zelle?
Diese Frage diskutieren Wissenschaftler seit mehr als zwanzig Jahren. Zwei Wege, über die Granzyme in eine Zelle gelangen können, wurden dabei diskutiert: über Poren oder über einen Membrantransport. Das Molekül Perforin hinterlässt kleine Löcher in der Zellmembran. Da es von T- und Killer-Zellen zeitgleich mit den Granzymen abgegeben wird, könnten sich hiermit Türen für Granzyme öffnen. Granzyme binden aber auch an die Oberfläche der attackierten Zellen und werden dann über kleine Membraneinschnürungen in das Zellinnere transportiert. Da die Perforin-Löcher in der Zellmembran recht klein sind und von der attackierten Zelle schnell wieder geschlossen werden, favorisierten die meisten Wissenschaftler den Membrantransport als Hauptzugang für Granzyme in eine Zelle.
Die Frage, welcher Weg die tödliche Menge Granzyme in eine Zelle bringt, ist nicht trivial. Mit diesem Wissen könnten neue Therapien zur Virus- und Krebsbekämpfung entwickelt werden. Nach zwanzig Jahren scheinen Wissenschaftler des Max-Planck-Instituts für Neurobiologie diese Frage nun geklärt zu haben: Entgegen der gängigen Meinung sind offenbar tatsächlich die Membranlöcher die Haupteintrittspforte für Granzyme. Den Beweis erbrachten die Wissenschaftler mit künstlich veränderten Granzymen, die nicht mehr an Membranen binden und somit nicht via Membrantransport in die Zelle gelangen können. "Interessanterweise war trotz dieser Einschränkung keine verminderte Effektivität der Angriffszellen festzustellen", erklärt Dieter Jenne. "Wir konnten außerdem zeigen, dass die Poren groß genug sind, um genügend Granzyme in die Zelle zu lassen, bevor diese die Löcher wieder abdichten kann."
"Granzym-Varianten und das Wissen um die Bedeutung der Membranlöcher könnte die Virus- und Krebsbekämpfung verbessern"
(Florian Kurschus)
"Das spannende an diesen Ergebnissen ist aber nicht nur, dass eine alte Frage nun endlich geklärt ist", sagt Florian Kurschus, "sondern dass unsere Granzym-Varianten zusammen mit dem Wissen, dass die Membranlöcher der wichtigste Zugang zur Zelle sind, verbesserte Therapiemöglichkeiten zur Virus- und Krebsbekämpfung bieten." Denn künstlich zugegebene Granzyme schädigen in hoher Dosis auch gesunde Zellen, in die sie über Membrantransport eindringen. Die neuen Granzym-Varianten reichern sich nicht in gesunden Zellen an, da sie nur den durch T- oder Killer-Zellen mittels Perforin eröffneten Weg nutzen können. Bei infizierten Zellen, die von einer T- oder Killer-Zelle als Feind erkannt wurden, wird ihnen diese Tür geöffnet – weit genug für ihre todbringende Arbeit.(Florian Kurschus)
© Max-Planck-Gesellschaft
Die Max-Planck-Gesellschaft (MPG) ist eine vorwiegend von Bund und Ländern finanzierte Einrichtung der Grundlagenforschung. Sie betreibt rund achtzig Max-Planck-Institute.
Schreiben Sie uns!
Beitrag schreiben