Hemmes mathematische Rätsel: Der Verkauf des Pferdes
Der Mathematiker, Astronom und Geograph Peter Apian wurde 1495 in Leisnig geboren und starb 1552 in Ingolstadt. Aus seinem 1527 erschienenen Buch »Ein newe und wolgegründete underweisung aller Kauffmanns Rechnung« stammt die folgende Aufgabe:
»Item einer will ein roß verkauffenn nach den Negeln. Das roß hat 4 Eysen / Ein itlich eysen 8 negel / machent allenthalben 32 Negell / So will er den erstenn nagel geben umb eyne haller / den andern umb 2 haller / den dritten umb 4 haller / den vierden umb 8 haller, den fünfften umb 16 etc. allemal nach sorewer. Ist die frag wie tewr / das roß verkaufft wird.«
Hier noch einmal in modernem Deutsch: Jemand will ein Pferd verkaufen und berechnet den Preis nach den Hufnägeln. Das Pferd hat vier Hufeisen und jedes Hufeisen acht Nägel. Für den ersten Nagel möchte er einen Heller haben und für jeden weiteren Nagel doppelt so viel wie für den Nagel davor. Wie teuer ist das Pferd?
Der erste Hufnagel kostet 1 = 20 Heller, der zweite 2 = 21 Heller, der dritte 4 = 22 Heller usw. und schließlich der zweiunddreißigste 231 Heller. Insgesamt kosten die Nägel s = 20 + 21 + 22 + 23 + … + 231 Heller. Um s berechnen zu können, multipliziert man beide Seiten der Gleichung mit 2. Dadurch erhöht sich auf der rechten Gleichungsseite der Exponent jedes Summanden um 1 und man erhält 2s = 21 + 22 + 23 + 24 + … + 232. Nun zieht man von der neu gewonnenen Gleichung die ursprüngliche ab und so bleibt s = 232 − 20 übrig. Der Preis der zweiunddreißig Hufnägel und damit der des Pferdes beträgt also 232 − 1 = 4 294 967 295 Heller – ein aberwitzig hoher Preis für ein Pferd.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.