Direkt zum Inhalt

Lexikon der Physik: Distributionen

Distributionen

Peter O. Roll, Mainz

Distributionen – verallgemeinerte Funktionen (englisch "generalized functions") – sind stetige lineare Funktionale auf geeigneten Funktionenräumen. (Für die genauen Definitionen s.u. Abschnitt "Definitionen".)

Sie stellen eine Verallgemeinerung des klassischen Funktionsbegriffs dar, bei der die übliche Zuordnung einer Funktion von Zahlen auf andere Zahlen (deren Funktionswerte), also

Funktion: Zahl

Zahl

zu einer Zuordnung

Distribution: Funktion

Zahl

erweitert wird. Die Distribution ordnet dabei der ganzen Funktion (der sogenannten "Testfunktion", siehe unten) einen Zahlwert zu.

Mit dieser abstrakten Verallgemeinerung des Funktionsbegriffs wird erreicht, daß sie eine exakte Lösung von mathematischen Problemen gestattet, welche sonst – nur mit Methoden der klassischen Analysis – nicht möglich oder formulierbar wäre. Im klassischen Funktionssinn hätten die gestellten Probleme keine Lösung. Zu solchen Situationen führen insbesondere viele physikalisch motivierte Problemstellungen, so daß sich der mathematische Aufwand, gemessen an der Relevanz für die praktische Verwertbarkeit in der Physik, durchaus lohnt. Allerdings wird häufig in physikalischen Anwendungen lediglich darauf hingewiesen, daß es sich bei den zur Lösung des gestellten Problems benötigten Objekten um Distributionen handelt, für die bestimmte Rechenregeln zu beachten sind und mit denen bestimmte Manipulationen nicht durchgeführt werden dürfen. Je nach Ziel oder persönlicher Neigung empfindet man ein solches Vorgehen als mehr oder weniger gerechtfertigt oder letztlich doch unbefriedigend.

Die wichtigsten und bekanntesten Beispiele stellen die Diracschen δ-Distributionen (δ-Funktion)

dar, mit deren Hilfe idealisierte Punktdichteverteilungen (daher ihr Name) behandelt werden können, wie z.B. Punktladungen, Punktdipole u.a., und welche immer noch häufig als Einstieg in die Theorie der Distributionen verwendet werden. Als Beispiel und zur Illustration der oben erwähnten Sachverhalte kann das Poisson-Gesetz für eine Einheits-Punktladung in der Elektrodynamik dienen, bei dem die dreidimensionale δ-Distribution

bei der Anwendung des Laplace-Operators

auf die Funktion

im ganzen Raum auftritt:



Daneben erscheinen diese Diracschen δ-Distributionen oft als "kontinuierliche" Kronecker-Symbole, z.B. in der Quantenmechanik in der Form

, oder in Vertauschungsrelationen der Form

Ein weiteres wichtiges Beispiel (und historisch vielleicht das erste) stellt die Heavisidesche Stufen- oder Sprungfunktion ς dar, deren Ableitung

gerade δ ist:



In der Theorie der Fourier-Integrale (Fourier-Analysis) lösen Distributionen das Problem, daß oftmals ganz einfache Funktionen keine Fourier-Transformierte im gewöhnlichen Funktionensinn haben, jedoch beispielsweise in der Behandlung von partiellen linearen Differentialgleichungen mit Randbedingungen alle auftretenden Funktionen als Fourier-Integral ausgedrückt werden müssen. So besitzen konstante Funktionen keine Fouriertransformierte – die Fouriertransformierte der 1 ist die Diracsche δ-Distribution; dies liefert umgekehrt eine besonders für die Physik wichtige Integraldarstellung der δ-Distribution, dazu siehe unten.

Definitionen

Für die genaue Definition benötigt man zunächst einige Begriffe. Ausgangspunkt bilden dabei besonders "gutartige" Funktionen, mit denen man die sogenannten Testfunktionenräume bildet, auf welchen die Distributionen dann als stetige lineare Funktionale definiert werden. Besonders "gut" sind beliebig oft stetig differenzierbare Funktionen

, die allerdings zusätzlich auch noch besonders "gut" integrierbar sein müssen. Dazu betrachtet man den mathematischen Abschluß der Menge

, welche Träger von ϕ heißt, geschrieben supp(ϕ) (aus dem englischen "support"). Grundlage aller folgenden Definitionen ist der lineare Raum D aller Funktionen, welche beliebig oft stetig differenzierbar sind und einen kompakten Träger besitzen (d.h. sie sind auch über beliebige Gebiete integrierbar). Die Elemente dieses Raumes heißen Testfunktionen oder Grundfunktionen. Ein Beispiel einer solchen Testfunktion ist t(x).



deren Träger die Kugel vom Radius 1 ist.

Die Menge der linearen Funktionale T, d.h. der linearen Abbildungen T:

in den Körper des Vektorraums, bildet selbst einen Vektorraum, den sog. algebraischen Dualraum von D . Um den sog. topologischen Dualraum D von D , d.h. den Raum der stetigen linearen Funktionale auf D zu konstruieren, benötigt man einen Konvergenzbegriff in D . Man sagt, daß eine Folge φn von Funktionen in D konvergiert, geschrieben

, wenn zwei Bedingungen erfüllt sind:

1. Es gibt ein Kompaktum K, so daß

und

2. für alle Multiindizes α gilt, daß alle partiellen Ableitungen

, d.h. gleichmäßig konvergieren. Dann heißt ein lineares Funktional T auf D stetig, wenn aus

in D folgt, daß auch

.

Solche stetigen linearen Funktionale T auf D heißen Distributionen. Man schreibt



und

für den Raum aller Distributionen.

Von besonderer Bedeutung für die Physik sind die δx-Distributionen, welche für alle Punkte

definiert sind durch

. Die Anwendung der δx-Distribution auf die Testfunktion liefert als Zahlenwert den Funktionswert am Punkt x (daher gibt es strenggenommen für jeden Punkt des Raumes eine δ-Distribution).

Eine wichtige Möglichkeit, stetige lineare Funktionale auf D zu konstruieren, d.h. Distributionen zu erzeugen, ergibt sich durch Integration: Jede lokal integrierbare Funktion f erzeugt eine Distribution [f] durch



.

Alle Distributionen, welche sich auf diese Art durch Integration ergeben, heißen regulär, alle Distributionen, welche nicht regulär sind, heißen singulär. Dazu gehören insbesondere die δ-Distributionen. Die in der Physik oft zu findende Schreibweise



ist rein formal zu verstehen, gemeint ist



.

Obige Gleichung kann nicht durch einen Grenzübergang mit einer Funktionenfolge realisiert werden, da dies den Lebesgueschen Grenzwertsatz verletzen würde.

Einige Rechenregeln

Ein Vorteil obiger Definition ist, daß man nun eine lineare Substitution und beliebige partielle Ableitungen von Distributionen über die jeweilige Operation der Testfunktionen definieren kann. Die folgenden Rechenregeln, welche häufig in physikalischen Anwendungen benötigt werden, lassen sich leicht für reguläre Distributionen herleiten und werden entsprechend – per definitionem – auf singuläre Distributionen übertragen.

Ist y = Ax + b eine lineare Transformation von

, wobei A eine n × n-Matrix und

ist, und ist g(x) = f(Ax + b) sowie [g] die von g erzeugte Distribution, so gilt



.

Genauso, wie man diese Formel für reguläre Distributionen mit Hilfe der Transformationsformel für mehrdimensionale Integrale im

zeigen kann, führt Produktintegration unter Ausnutzung der Tatsache, daß die Integranden wegen der kompakten Träger der Testfunktionen im Unendlichen verschwinden, auf die folgende Rechenvorschrift:



.

Distributionen besitzen also Ableitungen beliebiger Ordnung. Beispiel:

.

Damit kann man folgende Rechenregeln zeigen:



konstant,



,

wobei xi die einfachen Nullstellen der Funktion f sind.

Für die Gültigkeit der bisherigen Überlegungen ist von zentraler Bedeutung, daß die Testfunktionen im Unendlichen verschwinden. Man kann die Definitionen nun noch erweitern, indem man diese Voraussetzung etwas abschwächt und als Testfunktionen auch solche zuläßt, die für die auftretenden Integrationen im Unendlichen hinreichend schnell "abfallen". Dies führt auf einen Funktionenraum F , den sog. Schwartzschen Raum der schnell-fallenden Funktionen ("schneller als jede Potenz von 1/x fallend"). Die mathematisch genaue Definition lautet: Eine beliebig oft stetig differenzierbare Funktion φ auf dem

heißt schnell-fallend (und ist ein Element von F ), wenn zu jedem Multiindex α und zu jedem

eine Konstante c existiert, so daß



Es ist D ein Teilraum von F , genauer liegt D dicht in F . Stetige lineare Funktionale auf F heißen temperierte Distributionen. Diese benötigt man für die Fourier-Transformation: Für Funktionen

existiert die Fouriertransformierte F [f(x)](p) definiert als



.

Analog zu den obigen Definitionen wird die Fourier-Transformierte von temperierten Distributionen T über die Fourier-Transformierte der Testfunktion definiert:



.

Mit geeigneten "Fortsetzungen" für einige Distributionen aus D' in S' kann man für diese ebenfalls eine Fourier-Transformation erklären. Auf diese Weise erhält man eine wichtige Fourier-Darstellung der δ-Distribution



und für beliebige Ableitungen

der δ-Distribution gilt



Das Konzept der verallgemeinerten Funktionen als Funktionale auf Testfunktionenräumen erlaubt eine mathematisch präzise Beschreibung von Quantenfeldern. Weil diese als Funktionen eines Punktes x des Minkowski-Raumes in der Form φ(x) keine wirkliche Observable darstellen können – dies erforderte unendlich hohe Energie –, erscheint es sinnvoll, nur einen "gemittelten" Wert über eine hinreichend kleine Umgebung des Punktes als meßbare Größe zu betrachten. Man definiert daher Quantenfelder als operatorwertige Distributionen auf dem Minkowski-Raum, d.h. man verwendet in Matrixelementen der Form

das Quantenfeld φ als ein mit einer Testfunktion f "verschmiertes" Quantenfeld

. Ein anderes Beispiel für das Auftreten der Distributionen-Theorie in der Physik findet man im Rahmen der elementaren Quantenmechanik bei der Lösung der Schrödinger-Gleichung: Die zur Lösung dieser Gleichung benutzten ebenen Wellen eikx gehören gerade nicht zu den zulässigen Lösungsvektoren im HilbertRaum, nämlich den quadratintegrablen Funktionen. (Das Integral einer Funktion, die, wie z.B. eikx, auf dem ganzen Raum vom Betrag 1 ist, divergiert.) Auch diese Problematik wird mathematisch konsistent mit Hilfe von Gelfand-Tripeln, also innerhalb der Theorie der Distributionen gelöst.

Somit zeigt sich, daß nicht nur in der "klassischen" Einführung der δ-Distribution als Dichtefunktion einer Punktladung, sondern auch in der Feldtheorie oder der Quantenmechanik Distributionen vertraute physikalische Idealisierungen mathematisch exakt abbilden.

Die δ-Distribution wurde formal 1925 als Punktdichtefunktion mit geeigneten Rechenregeln, welche die Besonderheiten dieses Konstrukts berücksichtigten, von P.A.M. Dirac eingeführt. S.L. Sobolew (1908-1989) benutzte 1936 verallgemeinerte Funktionen im heutigen mathematischen Sinn zur Lösung des Cauchy-Problems für hyperbolische Differentialgleichungen. Die vollständige Theorie wurde in der zweiten Hälfte der vierziger Jahre vom französischen Mathematiker L. Schwartz (geb. 1915) entwickelt und in einer Monographie [1] niedergelegt. Eine umfassende Darstellung einschließlich der Gelfand-Tripel bieten die vier Bände von Gelfand, Schilow und Wilenkin [2], [3]. Kurze Einführungen bieten [4] und [5]. Als gutes deutsches Standardwerk kann [6] gelten; Anwendungen der Theorie der Distributionen im Bereich partieller Differentialgleichungen werden in [7] und im Bereich von Pseudodifferentialoperatoren in [8] dargestellt. [9] enthält eine kurze Darstellung der Anwendung von operatorwertigen Distributionen in der relativistischen Quantenfeldtheorie.

Literatur
[1] Schwartz, L.: Théorie des Distributions. Herman, Paris 1966.
[2] Gelfand, I.M., Schilow, G. E.: Verallgemeinerte Funktionen (Distributionen), Bd I (1960), II (1962), III (1964) VEB Berlin.
[3] Gelfand, I.M., Wilenkin, N.J.: Verallgemeinerte Funktionen (Distributionen), Bd IV (1964).
[4] Constantinescu, F.: Distributionen und ihre Anwendung in der Physik, Teubner, Stuttgart 1974.
[5] Lighthill, M J: Einführung in die Theorie der Fourier-Analysis und der verallgemeinerten Funktionen, BI, Mannheim 1966.
[6] Jantscher, L.: Distributionen, de Gruyter, Berlin 1971.
[7] Wloka, J.: Partielle Differentialgleichungen, Teubner, Stuttgart 1982.
[8] Taylor, M. E.: Pseudodifferential Operators, Princeton UP, Princeton 1981.
[9] Streater, R. F., Wightman, A. S.: PCT, Spin, Statistics, and all that, Benjamin, Cummings, Reading 1964.

  • Die Autoren
Mitarbeiter Band I und II

Redaktion:

Silvia Barnert
Dr. Matthias Delbrück
Dr. Reinald Eis
Natalie Fischer
Walter Greulich (Schriftleiter)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (Optics) Lynn Schilling-Benz
Dr. Joachim Schüller

Mitarbeiter Band III

Redaktion:

Christine Weber
Ulrich Kilian

Autoren (A) und Berater (B):

In eckigen Klammern steht das Autorenkürzel, die Zahl in der runden Klammer ist die Fachgebietsnummer; eine Liste der Fachgebiete findet sich im Vorwort.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hamburg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Frankfurt (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Genf [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27; Essay Biophysik)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmern [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essay Adaptive Optik)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hamburg [KF2] (A) (Essay Algebraische Quantenfeldtheorie)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22; Essay Datenverarbeitungssysteme künftiger Hochenergie- und Schwerionen-Experimente)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (A, B) (01, 16; Essay Dichtefunktionaltheorie)
Prof. Dr. Hellmut Haberland, Freiburg [HH4] (A) (Essay Clusterphysik)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hannover [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hamburg [UK] (A) (19)
Thomas Kluge, Mainz [TK] (A) (20)
Achim Knoll, Straßburg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresden [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mainz [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, UK [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09; Essay Akustik)
Guenter Milde, Dresden [GM1] (A) (12)
Maritha Milde, Dresden [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essay Atom- und Ionenfallen)
Dr. Andreas Müller, Kiel [AM2] (A) (33; Essay Alltagsphysik)
Dr. Nikolaus Nestle, Regensburg [NN] (A) (05)
Dr. Thomas Otto, Genf [TO] (A) (06; Essay Analytische Mechanik)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essay Atmosphäre)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, München [RAP] (A) (14; Essay Allgemeine Relativitätstheorie)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Freiburg [OR2] (A) (16; Essay Clusterphysik)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essay Algebraische Quantenfeldtheorie)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mainz [OR1] (A, B) (04, 15; Essay Distributionen)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, UK [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Gießen (B) (06, 20)
Dr. Arne Schirrmacher, München [AS5] (A) (02)
Christina Schmitt, Freiburg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mainz [JS2] (A) (10; Essay Analytische Mechanik)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11; Essay Chaos)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, München [KS] (A, B) (07, 20)
Cornelius Suchy, Brüssel [CS2] (A) (20)
William J. Thompson, Chapel Hill, USA [WJT] (A) (Essay Computer in der Physik)
Dr. Thomas Volkmann, Köln [TV] (A) (20)
Dipl.-Geophys. Rolf vom Stein, Köln [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29; Essay Atmosphäre)
Manfred Weber, Frankfurt [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, USA [DW] (A) (Essay Atom- und Ionenfallen)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20)Steffen Wolf, Freiburg [SW] (A) (16)
Dr. Michael Zillgitt, Frankfurt [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Jena [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Mitarbeiter Band IV

Dr. Ulrich Kilian (verantwortlich)
Christine Weber

Redaktionsassistenz:

Matthias Beurer

Physikhistorische Beratung:

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

Autoren (A) und Berater (B):

In eckigen Klammern steht das Autorenkürzel, die Zahl in der runden Klammer ist die Fachgebietsnummer; eine Liste der Fachgebiete findet sich im Vorwort.

Markus Aspelmeyer, München [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Dr. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hamburg [UB2] (A) (Essay Quasare)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (Essay Molekularstrahlepitaxie)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Wien [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33; Essay Optische Erscheinungen der Atmosphäre)
Dr. Christian Eurich, Bremen [CE] (A) (Essay Neuronale Netze)
Dr. Angelika Fallert-Müller, Groß-Zimmern [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15; Essay Perkolationstheorie)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essay Rastersondenmikroskopie)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hannover [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Bern [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzburg [MG1] (B) (01, 16)
Gunther Hadwich, München [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hamburg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, München [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essay Nanoröhrchen)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04; Essay Numerische Methoden in der Physik)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15; Essay Quantengravitation)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Dr. Uwe Klemradt, München [UK1] (A) (20, Essay Phasenübergänge und kritische Phänomene)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essay Ober- und Grenzflächenphysik)
Dr. Bernd Krause, München [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, München [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, München [KVM] (A) (02)
Dr. Rudi Michalak, Augsburg [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09)
Günter Milde, Dresden [GM1] (A) (12)
Marita Milde, Dresden [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20; Essays Molekularstrahlepitaxie, Ober- und Grenzflächenphysik und Rastersondenmikroskopie)
Dr. Thomas Otto, Genf [TO] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, München [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essay Nanoröhrchen)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15; Essay Quanteninformatik)
Robert Raussendorf, München [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15; Essay Quantenmechanik und ihre Interpretationen)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essay Nanoröhrchen)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Leuven, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essay Nanoröhrchen)
Dr. Martin Schön, Konstanz [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (Essay Quasikristalle und Quasi-Elementarzellen)
Prof. Dr. Klaus Stierstadt, München [KS] (B)
Dr. Siegmund Stintzing, München [SS1] (A) (22)
Cornelius Suchy, Brüssel [CS2] (A) (20)
Dr. Volker Theileis, München [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (Essay Renormierung)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Köln [TV] (A) (20)
Rolf vom Stein, Köln [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Frankfurt [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (Essay Neutrinophysik)
Dr. Achim Wixforth, München [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23; Essay Organische Supraleiter)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21; Essay Oberflächenrekonstruktionen)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, München [WZ] (A) (20)

Mitarbeiter Band V

Dr. Ulrich Kilian (verantwortlich)
Christine Weber

Redaktionsassistenz:

Matthias Beurer

Physikhistorische Beratung:

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

Autoren (A) und Berater (B):

In eckigen Klammern steht das Autorenkürzel, die Zahl in der runden Klammer ist die Fachgebietsnummer; eine Liste der Fachgebiete findet sich im Vorwort.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, München [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Dr. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29; Essay Seismologie)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (Essay Spindichtewellen)
Dr. Michael Eckert, München [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (Essay Supraleitung und Suprafluidität)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Wien [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmern [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hannover [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essays Symmetrie und Vakuum)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, München [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, USA (A) (Essay Sonolumineszenz)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Thomas Kluge, Jülich [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Bernd Krause, München [BK1] (A) (19)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (Essay Sonolumineszenz)
Priv.-Doz. Dr. Axel Lorke, München [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (Essay Stringtheorie)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresden [RM1] (A) (23; Essay Tieftemperaturphysik)
Günter Milde, Dresden [GM1] (A) (12)
Helmut Milde, Dresden [HM1] (A) (09)
Marita Milde, Dresden [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trier [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essay Umweltphysik)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Genf [TO] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, München [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, München [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14; Essay Spezielle Relativitätstheorie)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, München [KS] (B)
Dr. Siegmund Stintzing, München [SS1] (A) (22)
Dr. Berthold Suchan, Gießen [BS] (A) (Essay Wissenschaftsphilosophie)
Cornelius Suchy, Brüssel [CS2] (A) (20)
Dr. Volker Theileis, München [VT] (A) (20)
Prof. Dr. Stefan Theisen, München (A) (Essay Stringtheorie)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Köln [TV] (A) (20)
Rolf vom Stein, Köln [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Frankfurt [MW1] (A) (28)
Dr. Martin Werner, Hamburg [MW] (A) (29)
Dr. Achim Wixforth, München [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Dr. Stefan L. Wolff, München [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, München [WZ] (A) (20)

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.