Tropische Geometrie: Das Skelett der Amöbe
Wenn man ein kompliziertes mathematisches Problem lösen möchte, erweist sich der direkte Weg manchmal als schwierig. In diesen Fällen lohnt es sich, vom gewohnten Pfad abzuweichen und einen Umweg in Kauf zu nehmen.
In einer solchen Situation befand sich Gerolamo Cardano im 16. Jahrhundert. Damals biss er sich an der Lösung kubischer Gleichungen die Zähne aus. Doch irgendwann kam ihm eine zündende Idee, welche die moderne Mathematik auf ungeahnte Weise prägen sollte: Er führte während seiner Berechnungen Wurzeln aus negativen Zahlen ein – heute sind sie als imaginäre Zahlen bekannt. Er maß ihnen keine besondere Bedeutung bei, sie halfen ihm aber, die kniffligen Aufgaben zu lösen. Inzwischen haben sich komplexe Zahlen, die sich aus reellen und imaginären Zahlen zusammensetzen, als so wichtig herausgestellt, dass viele aktuelle Fortschritte der Naturwissenschaften ohne sie nicht denkbar wären.
Die tropische Geometrie ist ein weiteres Beispiel für einen zielführenden Umweg. Sie entstand in den 1980er Jahren und ist inzwischen zu einem aktiven Forschungsfeld herangewachsen, das auch andere mathematische Bereiche beeinflusst. Einer der größten Nutznießer dieser Entwicklung ist die algebraische Geometrie. Wie Mathematiker feststellten, kann es sich in diesem Gebiet lohnen, einen Schlenker über die tropische Geometrie zu machen …
Schreiben Sie uns!
1 Beitrag anzeigen