Direkt zum Inhalt

Hirnforschung: Neuronales Mosaik der Töne

Das Gehirn filtert, was wir hören. Das gelingt ihm auch deshalb, weil einzelne Gruppen seiner Neuronen nur auf bestimmte Frequenzen reagieren. Neurobiologen vom Max-Planck-Institut für biologische Kybernetik in Tübingen haben jetzt für einige Bereiche des auditorischen Cortex eine Frequenzkarte erstellt.
Makake
Was wir hören, entscheidet unser Gehirn. Ob in einer Fabrikhalle, in der ratternde Maschinen Krach machen, oder bei einer Party, auf der Musik und redende Leute durcheinander lärmen: Wenn wir uns unterhalten, können wir die Stimme des Gesprächspartners immer noch aus der Geräuschkulisse herausfiltern. Wie es das macht, haben Neurophysiologen aber noch nicht völlig verstanden.

Immerhin haben sie inzwischen herausgefunden, dass bestimmte Gehirnareale die Cochlea abbilden – und zwar ähnlich wie bei der Netzhaut Punkt für Punkt. Offenbar aktivieren also verschiedene Frequenzen bestimmte Gruppen von Neuronen des auditorischen Cortex. Das Gehirn analysiert anschließend vermutlich, welche Schallquelle oder Schallquellen eine bestimmte Frequenz abgibt beziehungsweise abgeben. Welche Bereiche des Gehirns für einzelne Frequenzen zuständig sind, konnten Wissenschaftler bislang im Detail nur mit elektrophysiologischen und anatomischen Untersuchungen zeigen, und das auch nur im Gehirn von Tieren, zum Beispiel von Makaken.

Am Menschen werden solche Studien nur selten gemacht. Dafür haben Neurologen das Gehirn des Menschen inzwischen ziemlich gründlich mit der funktionellen Kernspintomografie (fMRI) durchleuchtet, auch den auditorischen Cortex. Die Aktivitätsmuster, die sie darin beim Hören sahen, haben sie oft mit den Studien an den Affen verglichen. "Das ist aber ein schlechter Vergleich", sagt Christopher Petkov, der die Untersuchungen am Tübinger Max-Planck-Institut leitete.

Mosaik der Schallverarbeitung | Das Hirnareal, mit dem Makaken Schall verarbeiten ist, wie ein Mosaik in einzelne Felder aufgeteilt. Max-Planck-Forscher haben in einer fMRI-Studie jetzt charakterisiert, wie sich das Frequenzspektrum über jedes einzelne dieser Felder verteilt.
Nur – fMRI-Aufnahmen des auditorischen Cortex von Affen gab es bislang nicht. "Wir haben diese Lücke jetzt geschlossen", erklärt Petkov. Nun können die Wissenschaftler vergleichen, welche Ergebnisse verschiedene Methoden über den auditorischen Cortex der Makaken liefern. Sie können aber auch besser untersuchen, inwiefern sich die neuronalen Schallzentren der Affen und des Menschen ähneln und unterscheiden. Auf diese Weise können sie künftig auch besser untersuchen, wie sich das Gehirn in einer lauten Umgebung auf eine einzelne Schallquelle konzentriert.

In der neue fMRI-Studie haben die Wissenschaftler nicht nur die einzelnen Felder des auditorischen Cortex (ACFs) identifiziert, wie sie es aus den Ergebnissen der früheren Untersuchungen erwartet hatten. Sie haben auch für die meisten Felder Frequenzkarten gezeichnet, also festgestellt, wo in einem Feld bestimmte Frequenzen verarbeitet werden. Vier ACFs haben sie dabei erstmals kartografiert.

Insgesamt haben sie nun elf ACFs charakterisiert, die sich auf der Hirnoberfläche mosaikartig anordnen. Dabei ergab sich ein periodisches Muster: Über ein Feld hinweg nimmt die verarbeitete Frequenz mit einem Gradienten entweder ab oder zu. Im den daran anschließenden Feldern entwickelt sich die Frequenz genau umgekehrt, sodass sich über den auditorischen Cortex hinweg ein Auf und Ab der Tonhöhen ergibt, für die bestimmte Nerven zuständig sind. Jede Frequenz findet sich daher in jedem ACF wieder. "Wahrscheinlich haben die einzelnen ACF dabei verschiedene Aufgaben", sagt Petkov: "Die Unterschiede kennen wir aber noch nicht genau."

Immerhin haben die Forscher die ACFs schon in zwei Gruppen eingeteilt, die jeweils für andere Schallsignale zuständig sind. Drei dieser Felder, die eine Art Kern des auditorischen Cortex bilden, reagieren auf Töne einzelner Frequenzen. Die anderen acht, darunter auch die neu charakterisierten, sprechen eher auf Geräusche an, in denen sich verschiedene Frequenzen mischen. Diese ACFs schließen sich wie ein Gürtel um die drei Kernfelder.

Das Muster der Tonhöhen in jedem einzelnen ACF war jedoch nicht so differenziert, wie es sich auf der Tastatur eines Klaviers findet. Richtig gut konnten sie die Zuständigkeiten bestimmter Nerven nur zuordnen, wenn die Töne vier Oktaven auseinander lagen. "Das liegt aber vor allem an den experimentellen Bedingungen", sagt Petkov: Um im fMRI überhaupt deutliche Signale zu sehen, haben sie die Affen mit Tönen beschallt, welche die Tiere in ihrer natürlichen Umgebung hören und die gleichzeitig lauter waren als die Testtöne in elektrophysiologischen Studien. "Dann sind immer größere Bereiche im auditorischen Cortex aktiv", so Petkov. Für die Max-Planck-Forscher war das nur ein Nebenaspekt. Diese Erkenntnis gibt aber einen Hinweis, wie Lärm den auditorischen Cortex beeinträchtigt und was im Gehirn passiert, wenn sich Menschen einen Hörschaden zuziehen.

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.