Lexikon der Ernährung: Biomembran
Biomembran, biologische Membran, Ebiomembrane, eine Struktur, die Lipide, Glycolipide, Proteine und Glycoproteine enthält und die Zelle nach außen abgrenzt (Zellmembran) bzw. sie in Kompartimente (Kompartimentierung) unterteilt. Es handelt sich um eine flächige, 6–10 nm dicke Struktur. Die Lipide besitzen hydrophile Kopfgruppen (in der Abb. durch Kugeln dargestellt) und hydrophobe Schwanzregionen (sie sind amphiphil). In wässrigen Lösungen bilden sie spontan Doppelschichten, in denen sich die Moleküle Seite an Seite und Schwanz an Schwanz aufreihen, so dass die Köpfe auf jeder Seite der Doppelschicht in die wässrige Phase zeigen und Wasser von den Schwanzregionen ausschließen. Diese Struktur ist im Elektronenmikroskop nach Anfärbung mit Osmiumtetroxid oder Uranylacetat als zwei schwarze Linien zu sehen, getrennt durch einen nichtgefärbten Zwischenraum. Diesem beobachteten Bild wurde bis vor kurzem die jetzt veraltete Bezeichnung „Einheitsmembran“ zugewiesen, der jedoch den vielfältigen funktionalen Unterschieden spezialisierter Membranen im Sinne einer Funktionsmembran nicht gerecht wird. Mitochondrien (und die Plastiden der Pflanzen) werden von zwei Membranen umgeben, der Zellkern dagegen von einer Membran, die sich, sich selbst verdoppelnd, zurückfaltet. Das Cytoplasma eukaryontischer Zellen ist durch ausgedehnte Membranstrukturen charakterisiert, z. B. das endoplasmatische Reticulum, den Golgi-Apparat und die Vakuolen. Im Gegensatz dazu besitzen die Prokaryonten keine internen Membranen, obwohl deren Zellmembran in einigen Fällen stark eingestülpt ist.
Die Intaktheit der B. ist zwingende Voraussetzung für praktisch alle Lebensprozesse:
Die hauptsächlich in Membranen vorkommenden Lipide sind Phospholipide, Glycolipide, Cholesterin und Cholesterinester (Membranlipide). Es sind noch verschiedene andere Komponenten vorhanden, die genaue Zusammensetzung der Membran hängt von der Art und dem Typ der Zelle ab. Welche Proteine in welcher Menge vorkommen, hängt davon ab, welche Aufgabe die Membran erfüllt. So enthält die Myelinmembran der Nerven z. B. nur wenig Protein (18 %), während die innere Mitochondrienmembran zu ungefähr 75 % aus Protein besteht. Membranproteine nehmen eine Vielzahl von Funktionen wahr, z. B. als Mediatoren von sowohl aktivem als auch passivem Transport von nichtlipidlöslichen Substanzen durch die Membran, als Rezeptoren für Hormone und andere informationsübermittelnde Moleküle und als Enzyme. In bestimmten Fällen können sie auch eine strukturelle Rolle spielen.
Das zur Zeit allgemein anerkannte Strukturmodell der B. ist das Fließmembran- bzw. Flüssigmosaik-Modell (Efluid mosaic model). Lipidmoleküle und Membranproteine können innerhalb der Doppelschicht, in der sie lokalisiert sind, frei lateral diffundieren und sich drehen. Eine Flip-Flop-Bewegung von der inneren auf die äußere Oberfläche und umgekehrt ist jedoch energetisch ungünstig, weil die hydrophilen Substituenten die hydrophobe Phase durchqueren müssten. Folglich zeigt sich diese Art von Bewegung bei Proteinen so gut wie nie und kommt viel seltener vor, als die translatorische Bewegung der Lipide. Da zwischen der inneren und äußeren Schicht der Doppelschicht nur geringer Materialaustausch stattfindet, können die zwei Oberflächen unterschiedliche Zusammensetzungen besitzen. Für Membranproteine gilt diese Asymmetrie absolut, in der Plasmamembran liegen zumindest in den beiden Monoschichten unterschiedliche Anteile von verschiedenen Lipidklassen vor. Angelagerte Kohlenhydratreste scheinen nur auf der nichtcytosolischen Oberfläche lokalisiert zu sein. Kohlenhydratgruppen, die aus der B. herausragen, sind an den Vorgängen der Zellerkennung, der Zelladhäsion und möglicherweise an der interzellulären Kommunikation beteiligt. Sie tragen auch zu dem verschiedenartigen immunologischen Charakter der Zelle bei.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.