Direkt zum Inhalt

Lexikon der Mathematik: Hopf-Algebra

eine Bialgebra (H, m, ϵ, Δ, α) über einem kommutativen Ring R mit einer bijektiven R-Modulabbildung S : HH (der Antipodenabbildung) derart, daß \begin{eqnarray}m\circ (S\otimes {\text{id}}_{H})\circ {\rm{\Delta }}=\varepsilon \circ \alpha \end{eqnarray}

Abbildung 1 zum Lexikonartikel Hopf-Algebra
© Springer-Verlag GmbH Deutschland 2017
 Bild vergrößern

und \begin{eqnarray}m\circ ({\text{id}}_{H}\otimes S)\circ {\rm{\Delta }}=\varepsilon \circ \alpha .\end{eqnarray}

Abbildung 2 zum Lexikonartikel Hopf-Algebra
© Springer-Verlag GmbH Deutschland 2017
 Bild vergrößern

Manche Autoren setzen die Antipodenabbildung nicht notwendig als bijektiv voraus. Die Antipodenabbildung ist ein Anti-Automorphismus von Hopf-Algebren.

Die Bialgebrenstruktur der Gruppenalgebra \({\mathbb{K}}\text{(}G\text{)}\) einer Gruppe G wird durch S(g) ≔ g−1 zu einer Hopf-Algebra. Die Universelle Einhüllende U(L) einer Lie-Algebra L wird zu einer Hopf-Algebra durch die durch S(x) ≔ −x für xL induzierte Abbildung auf U(L).

Weitere Beispiele für Hopf-Algebren werden durch die Algebra der regulären Funktionen auf einer affinen algebraischen Gruppe über einem Körper, durch die Algebra der darstellbaren Funktionen auf einer kompakten topologischen Gruppe und durch die Algebra der singulären Homologie H*(G, ℂ) einer zusammenhängenden endlichdimensionalen Lie-Gruppe G gegeben. In diesen <?PageNum _439Fällen wird die Algebrenstruktur durch die Gruppenmultiplikation G × GG und die Komultiplikation durch die Diagonalabbildung GG × G induziert.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.