Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Geometrie: Ordnung messen!

Als Mathematiker geometrische Figuren sortierten, stießen sie auf eine Verbindung zu einem völlig anderen Bereich. Damit könnten sie sich dem Ziel, algebraische Gleichungen nach ihren Grundbausteinen zu ordnen, endlich nähern.
Bunte Geometrische Körper aus Papier gefaltet

Stellen Sie sich vor, es liegen zwei Vielecke (Polygone) aus Papier vor Ihnen. Ist es möglich, das erste so zu zerschneiden und neu zusammen­ zusetzen, dass die zweite Form dabei herauskommt? Was wie eine typische Knobelaufgabe für Rätselliebhaber klingt, beschäftigt Mathematiker nun schon seit Tausenden von Jahren.

Denn so einfach die Frage auch anmutet, geben sich Forscher nicht damit zufrieden, eine Schere in die Hand zu nehmen und herumzuprobie­ren. Stattdessen suchen sie nach Merkmalen, die im Vorfeld eindeutig festlegen, ob ein Objekt »scherenkon­gruent« zu einem anderen ist.

Tatsächlich gibt es für das obige Beispiel zweidimensionaler Polygone ein erstaunlich einfaches Kriterium: Solche Objekte sind scherenkongru­ent, wenn sie den gleichen Flächen­inhalt haben. Diese Erkenntnis eröffne­te sofort neue Fragen. Wie verhält es sich mit höherdimensionalen Figuren, etwa einem Tetraeder? Und was passiert, wenn man die zweidimensio­nalen Polygone, dreidimensionalen Polyeder oder höherdimensionalen Polytope in gekrümmten Geometrien betrachtet, in denen ihre Seiten nicht mehr geraden Linien entsprechen, sondern Geodäten, ähnlich den Län­gengraden der Erdkugel? …

Kennen Sie schon …

Spektrum - Die Woche – Akustische Kur gegen Stress

Naturgeräusche haben eine unglaublich beruhigende Wirkung auf uns. Wieso das so ist und wie Vogelgezwitscher und Wasserrauschen im Gehirn verarbeitet werden und auf unsere Psyche wirken, lesen Sie in der aktuellen Ausgabe der »Woche«. Außerdem: Läutet das KI-Zeitalter eine neue Ära der Physik ein?

Spektrum - Die Woche – Wie die Guinness-Brauerei den t-Test erfand

Wer hätte gedacht, dass eine Brauerei der Geburtsort für eine der wichtigsten mathematischen Methoden ist? Dem Guiness-Bier haben wir zu verdanken, dass Ergebnisse in der Wissenschaft als statistisch signifikant gewertet werden können. Außerdem in dieser »Woche«: Wie Rauchen das Immunsystem stört.

Spektrum der Wissenschaft – Fraktale

Seit Jahrzehnten arbeitet eine kleine Gruppe von Mathematikern an den letzten Geheimnissen des wohl bekanntesten Fraktals. Ihre Geschichte zeigt, wie technische Fortschritte selbst die abstraktesten mathematischen Gebiete voranbringen. Ein Durchbruch zur Entschlüsselung der Mandelbrot-Menge dürfte kurz bevorstehen. Außerdem im Heft: Bartenwale sind die Giganten der Meere. Ihre Nahrung besteht jedoch aus winzigen Planktonorganismen. Wie spüren die Wale das Futter in den Weiten des Ozeans auf? Drei Bierforscher interessieren sich für moderne und alte Hefestämme rund um das Brauen von Bier. Kryptografen und -innen arbeiten auf Hochtouren daran, neuartige Algorithmen zu entwickeln, die den Fähigkeiten künftiger Quantencomputer standhalten können. Es gibt einige vielversprechende Kandidaten, doch einige davon wurden bereits geknackt.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Campbell, J., Zakharevich, I.:Hilbert’s third problem modulo torsion and a con­jecture of Goncharov. ArXiv 1910.07112, 2019

Goncharov, A.:Volumes of hyperbolic manifolds and mixed Tate motives. ArXiv alg­geom/9601021, 1996

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.