Spiegelsymmetrie: Der tropische Spiegel
Im Mai 1991 ahnten die Besucher einer Konferenz des »Mathematical Sciences Research Institute« in Kalifornien nicht, dass sie eine große Überraschung erwartete. Der britische Stringtheoretiker Philip Candelas, damals an der University of Texas in Austin, präsentierte dort seine Forschungsergebnisse, doch die größtenteils aus Mathematikern bestehenden Zuhörer zweifelten die Richtigkeit dieser Arbeit an.
Der Physiker behauptete, eine Formel gefunden zu haben, die »rationale Kurven« auf einer extrem komplizierten sechsdimensionalen »Oberfläche« zählt. Mathematiker konnten bisher bloß Kurven ersten, zweiten und dritten Grades mit aufwändiger Computerunterstützung auf den seltsamen Gebilden zählen. Außerdem hatten sie kein Muster hinter diesen schnell anwachsenden Zahlen erwartet – geschweige denn, dass sich eine Formel zu ihrer Berechnung finden ließe.
Während des Vortrags fiel einigen Zuhörern auf: Candelas Wert für die Anzahl der Kurven dritten Grades unterschied sich von dem bereits bekannten Ergebnis der norwegischen Mathematiker Stein Arild Strømme, damals an der University of Utah, und Geir Ellingsrud, damals an der Universität Bergen. »Die algebraischen Geometer [im Publikum] zeigten sich arrogant, sie nahmen an, dass die Physiker einen Fehler gemacht hatten«, schreibt der Organisator der Konferenz und Fields-Medaillenträger Shing-Tung Yau in seinem Buch »The Shape of Inner Space«. Während Candelas und seine Kollegen daraufhin fieberhaft nach einem Fehler suchten, entdeckten Strømme und Ellingsrud etwa einen Monat später Ungereimtheiten in ihrem Programmcode – und gaben öffentlich bekannt, dass die Physiker richtiglagen.
Das Ergebnis von Candelas und seinen Kollegen hatte enorme Auswirkungen, die über das bloße Zählen von Kurven hinausgeht: Es deutete auf eine fundamentale Verbindung zwischen zwei völlig unterschiedlichen geometrischen Gebieten hin. Eine solche Übereinstimmung hatte niemand erwartet – und sie gibt Wissenschaftlern bis heute zahlreiche Rätsel auf …
Schreiben Sie uns!
Beitrag schreiben