Quantengravitation: Ein Labor für die Raumzeit
Die Aussichten, eine Theorie der Quantengravitation auf direkte Weise zu überprüfen, stehen schlecht – vorsichtig formuliert. Man bräuchte etwa einen Teilchenbeschleuniger mit galaktischen Ausmaßen, um zu jenen Energieskalen vorzudringen, auf denen sich eine quantisierte Schwerkraft bemerkbar machen würde. Oder nehmen wir Schwarze Löcher: Bei den Singularitäten in ihrem Inneren bricht die klassische Physik zusammen, aber wir können in kein Exemplar hineinschauen und untersuchen, was dort passiert. Ein drittes Beispiel für das Wirken der Quantengravitation sind die extremen Bedingungen in den ersten Momenten des Urknalls. Doch auf sie lässt sich heute nur noch mittels subtiler Signale zurückschließen, die sich dem All erst viel später aufgeprägt haben.
In einem Labor in der Nähe des kalifornischen Palo Alto verfolgt Monika Schleier-Smith, Professorin an der Stanford University, einen anderen Ansatz. Seit mehr als einem Jahrzehnt gibt es Ideen, denen zufolge die Schwerkraft – und sogar die Raumzeit selbst – aus der seltsamen quantenmechanischen Eigenschaft der Verschränkung hervorgehen könnte. Schleier-Smith will das überprüfen und mit hochgradig verschränkten Quantensystemen etwas erzeugen, das sich so verhält wie die verzerrte Raumzeit aus Albert Einsteins allgemeiner Relativitätstheorie.
In einer Veröffentlichung vom Juni 2021 skizzierte ihr Team den ersten experimentellen Schritt auf dem Weg dorthin. Dabei werden Atome von Lasern sowie durch Magnetfelder festgehalten, präzise positioniert und miteinander verknüpft. Wenn alles richtig eingestellt ist, ähneln die Korrelationen in dem System einfachen Modellen für die Raumzeit. Darauf aufbauend möchte Schleier-Smith Analogien zu komplexeren Geometrien wie denen von Schwarzen Löchern konstruieren …
Schreiben Sie uns!
Beitrag schreiben