Hemmes mathematische Rätsel: Können Sie die Gleichung lösen?
Gibt es 3 natürliche Zahlen x, y und z, für die die Gleichung 28x+30y+31z=365 korrekt ist?
Gibt es positive ganze Zahlen x, y und z, für die die Gleichung 28x + 30y + 31z = 365 korrekt ist?
Ein Gemeinjahr wie das Jahr 2023 hat 365 Tage, die sich auf Monate von 28, 30 und 31 Tagen Länge verteilen. Es gibt also positive ganze Zahlen, die die Gleichung erfüllen. Eine Lösung resultiert aus dem Kalender: x = 1 (Februar), y = 4 (April, Juni, September, November) und z = 7 (Januar, März, Mai, Juli, August, Oktober, Dezember). Es gibt aber noch eine zweite Lösung: x = 2, y = 1 und z = 9.
Schreiben Sie uns!
1 Beitrag anzeigen