Lexikon der Mathematik: Abelsches Integral
spezielle Form eines Integrals auf Riemannschen Flächen.
Es sei R eine abgeschlossene Riemannsche Fläche und a eine auf R meromorphe Funktion des lokalen Parameters z. Dann nennt man die komplexe Differentialform ω = a(z)dz ein Abelsches Differential. Das Differential ist von erster Art, falls a holomorph ist, von zweiter Art, falls das Residuum überall verschwindet, und ansonsten von dritter Art. Ist nun ω ein Abelsches Differential und p0 kein Pol von ω, so nennt man das Integral
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.