Direkt zum Inhalt

Lexikon der Mathematik: Dirac-Gleichung

Gleichung für das vierkomponentige, vom Raum-Zeit-Punkt x abhängige Dirac-feld (Spinor) ψ(x).

Mittels der Diracschen Gamma-Matrizenγμ läßt sich die Dirac-Gleichung wie folgt schreiben:

\begin{eqnarray}(-i{\gamma }^{\mu }{\partial }_{\mu }+mc/h)\psi =0.\end{eqnarray}

Dabei ist c die Lichtgeschwindigkeit und ℏ das Plancksche Wirkungsquantum. Die Dirac-Gleichung beschreibt ein Quantenfeld, dem ein Teilchen der Masse m und dem Spin 1/2 zugeordnet ist. Hauptanwendung sind dabei Elektron und Positron. Analog zur Interpretation der Schrödingergleichung wird hier ψ+ψ als Wahrscheinlichkeitsdichte interpretiert. (ψ+ ist der Hermitesch konjugierte Spinor zu ψ.) Die Dirac-Gleichung läßt sich durch Zerlegung von ψ in ebene Wellen lösen. Sie läßt sich auch im Rahmen der Allgemeinen Relativitätstheorie aufstellen und lösen, jedoch benötigt man bestimmte Zusatzvoraussetzungen, die an die globale Struktur der gekrümmten Raum-Zeit zu stellen sind, damit dort Spinoren existieren.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.