Lexikon der Mathematik: Polynom, trigonometrisches
vorheriger Artikel
nächster Artikel
eine endliche Summe der Form \begin{eqnarray}\frac{{a}_{0}}{2}+\displaystyle \sum _{k=1}^{n}({a}_{k}\ \cos kx+{b}_{k}\sin kx),\,\,\,\, x\in {\rm{{\mathbb{R}}}},\end{eqnarray} mit reellen Koeffizienten ak, bk, k = 0,…, n bzw. \begin{eqnarray}\displaystyle \sum _{|k|\le n}{c}_{k}{e}^{ikx}\end{eqnarray} mit den komplexen Koeffizienten ck ∈ ℂ, k = −n, −n + 1, …,n.
Copyright Springer Verlag GmbH Deutschland 2017
Die Autoren
- Prof. Dr. Guido Walz
Schreiben Sie uns!
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.