Direkt zum Inhalt

Lexikon der Mathematik: voller Funktor

ein Funktor, für den die Funktorabbildungen auf den Morphismenmengen derjenigen Paare von Objekten, die im Bild des Funktors liegen, surjektiv sind.

Genauer: Ein voller Funktor ist ein Funktor \(T:{\mathcal{C}}\to {\mathcal{D}}\) von der Kategorie \({\mathcal{C}}\) nach der Kategorie \({\mathcal{D}}\), derart, daß zu je zwei Objekten \(A,B\in Ob({\mathcal{C}})\) und zu jedem \(f\in Mo{r}_{{\mathcal{D}}}(T(A),T(B))\) auch ein \(g\in Mo{r}_{{\mathcal{C}}}(A,B)\) existiert mit f = T(g).

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.