Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Mathematik: Das Dreikörperproblem

Obwohl Forscher seit Jahrhunderten wissen, dass es unmöglich ist, die Flugbahnen dreier sich gegenseitig anziehender Objekte zu berechnen, birgt das Dreikörperproblem dennoch einige Überraschungen. Indem sich Mathematiker auf einzelne Aspekte des Themas konzentrieren, machen sie faszinierende Entdeckungen.
Korona der Sonnenfinsternis

Im Frühjahr 2014 hatte ich die Hoffnung weitestgehend aufgegeben, eine Antwort auf mein mathematisches Problem zu finden. Aus Mangel an Ideen begann ich, näherungsweise Lösungen am Computer zu berechnen. Natürlich würde ich so niemals meine Frage beantworten, aber ich hoffte, dass die Ergebnisse auf einen zielführenden Weg deuten würden.

Leider bin ich kein Programmierexperte. Mir dauerte alles zu lange und ich wurde immer ungeduldiger – wodurch ich alles verschlimmerte. Für einen Mathematiker wie mich, der sonst nur mit Stift und Papier arbeitet, entwickelte sich das Ganze zu einer sehr unangenehmen Erfahrung. Deshalb beschloss ich, in diesem Herbst zu meinem Freund Carles Simó an die Universität Barcelona zu reisen, um ihn zu bitten, mich bei meiner unbeholfenen Suche zu unterstützen.

Simó gilt als einer der erfinderischsten Experten für numerische Analysis. Zudem verschwendet er keine Zeit damit, um den heißen Brei herumzureden. An meinem ersten Nachmittag in seinem Büro schilderte ich ihm mein Problem. Daraufhin sah er mich mit seinen durchdringenden Augen an und fragte: »Warum interessierst du dich überhaupt dafür?« Das war wie ein harter Schlag ins Gesicht – schließlich hatte ich dieser Aufgabe bereits 17 Jahre lang den Großteil meiner Zeit geopfert …

Kennen Sie schon …

Spektrum Kompakt - 7/2025 - Paradox und Dilemma - Ausweglose Situationen in der Mathematik

Spektrum Kompakt – Paradox und Dilemma - Ausweglose Situationen in der Mathematik

Das Lösen von Paradoxa hat die Mathematik vorangebracht. Allerdings verstecken sich die Widersprüche auch im Alltag; zum Beispiel in den berühmten Fragen, wieso man so lange auf den Fahrstuhl warten muss, warum die Bahn immer zu spät kommt und wie lang die Grenze zwischen zwei Ländern wirklich ist.

Spektrum der Wissenschaft - 2/2025 - KI als Kopilot

Spektrum der Wissenschaft – KI als Kopilot

Künstliche Intelligenz ist immer öfter an mathematischen Durchbrüchen entscheidend beteiligt. Der Mathematiker Terence Tao erklärt im Interview, wie Beweisprüfer und KI-Programme die Arbeit der Fachleute ändern können. Daneben berichten wir über Waschbären, die in Deutschland und Europa weiter auf dem Vormarsch. Wir zeigen, welche Folgen diese invasive Art für Menschen und Ökosysteme hat. Im dritten Teil unserer Serie »50 Jahre Lucy« geht es um die 1925 veröffentlichte Erstbeschreibung des Australopithecus africanus: Raymond Dart führte damit eine neue Gattung für die Vorfahren des Menschen ein, die in der Fachwelt zunächst auf wenig Gegenliebe stieß. Ein weiterer Artikel widmet sich der Erzeugung von menschlichen Embryonen mit Hilfe der Stammzellenforschung und auch den daraus resultierenden ethischen Fragen.

Spektrum der Wissenschaft Spezial Physik - Mathematik - Technik - 4/2024 - Vielfältige Quanten

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Spektrum Kompakt – Paradox und Dilemma - Ausweglose Situationen in der Mathematik

Das Lösen von Paradoxa hat die Mathematik vorangebracht. Allerdings verstecken sich die Widersprüche auch im Alltag; zum Beispiel in den berühmten Fragen, wieso man so lange auf den Fahrstuhl warten muss, warum die Bahn immer zu spät kommt und wie lang die Grenze zwischen zwei Ländern wirklich ist.

  • Quellen

Chenciner, A. et al.:Simple choreographic motions of N bodies: Preliminary study. In: Newton, P. et al. (Hg.): Geometry, mechanics, and dynamics. Springer, 2002

Chenciner, A., Montgomery, R.:A remarkable periodic solution of the three-body problem in the case of equal masses. Annals of Mathematics 152, 2000

Moeckel, R., Montgomery, R.:Realizing all reduced syzygy sequences in the planar three-body problem. Nonlinearity 28, 2015

McGehee, R.:Triple collision in the collinear three-body problem. Inventiones mathematicae 27, 1974

Sundman, K.:Mémoire sur le problème des trois corps. Acta Mathematica 36, 1912

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.