Hemmes mathematische Rätsel: Welche Zahl ist gesucht?
Die heutige Kopfnuss stammt aus dem wunderbaren 2002 erschienenen Buch »The Inquisitive Problem Solver« von Paul Vaderlind, Richard Guy und Loren Larson.
Zwei fünfstellige natürliche Zahlen enthalten zusammen jede der zehn Ziffern von null bis neun genau einmal. Keine der beiden Zahlen beginnt mit der Null. Zieht man die kleinere von der größeren Zahl ab, erhält man ihre Differenz Δ. Welches ist der kleinste Wert, den Δ haben kann?
Die Differenz Δ wird minimal, wenn die größere Zahl möglichst wenig über und die kleinere Zahl möglichst wenig unter demselben ganzzahligen Vielfachen von 10 000 liegt. Die hinteren vier Stellen der größeren Zahl müssen deshalb 0123 und die der kleineren Zahl 9876 sein. Daraus ergeben sich die beiden Zahlen 50 123 und 49 876, die die Differenz Δ = 247 haben.
Schreiben Sie uns!
Beitrag schreiben