Freistetters Formelwelt: Milliardär und Trump-Anhänger inspiriert die Zahlentheorie
Alle Folgen seiner wöchentlichen Kolumne, die immer sonntags erscheint, finden Sie hier.
Der US-Amerikaner Andrew Beal hatte sich in den 1990er Jahren viel mit der berühmten Vermutung von Fermat (an + bn = cn für n > 2 und a, b, c, n positive ganze Zahlen) beschäftigt. Sie war mehr als 300 Jahre lang unbewiesen. Den Beweis fand schließlich der Mathematiker Andrew Wiles im Jahr 1994. Der andere Andrew hat das nicht geschafft – aber Beal kam bei seinen Überlegungen zu dieser Formel:
Sie besagt Folgendes: Vorausgesetzt, die Gleichung gilt und alle Zahlen sind positive, ganze Zahlen mit a, b und c größer als 2, dann haben A, B und C einen gemeinsamen Teiler. Ob diese Behauptung richtig ist, wusste Beal nicht. Er kam aus der Immobilienbranche, verdiente viel Geld, eröffnete seine eigene Bank und gehört heute zu den reichsten Menschen in den USA. Er war zwar an Mathematik interessiert, hatte dieses Fach jedoch nie gezielt studiert. Also schrieb Beal diverse Fachleute an und bat sie um ihre Meinung.
Wer sich auf irgendeine Art öffentlich mit Mathematik beschäftigt, wird diese Art von Post kennen: Immer wieder gibt es Menschen, die der Meinung sind, eine große Entdeckung gemacht zu haben, die sie von der Fachwelt offiziell bestätigt haben wollen. In den meisten Fällen handelt es sich dabei um alles Mögliche, nur nicht um seriöse Mathematik. Doch bei Beals Vermutung sah die Sache anders aus. Harold Edwards, Mathematikprofessor an der New York University, antwortete ihm als Erster und schrieb, es wäre tatsächlich bemerkenswert, wenn die Vermutung wahr wäre. Er vermute aber, dass eine ausführliche Suche mit dem Computer schnell ein Gegenbeispiel liefern würde. Und auch andere Fachleute bestätigten Beal, dass seine Hypothese aus mathematischer Sicht interessant war.
Mathematik ist nicht käuflich
Trotz aller Bemühungen konnte allerdings niemand ein Gegenbeispiel finden. Deshalb setzte Beal 1997 ein Preisgeld auf den Beweis (oder die Widerlegung) seiner Hypothese aus. Anfangs betrug es 5000 US-Dollar, mittlerweile könnte man damit eine ganze Million verdienen. Leisten kann sich Beal diese Summe problemlos. 2016 spendete er gut drei Millionen Dollar für den Wahlkampf von Donald Trump; 2020 legte er noch einmal knapp zwei Millionen nach. Dass sein Favorit für das Präsidentenamt die Niederlage bei dieser Wahl nicht anerkannte und diverse Verschwörungstheorien dazu propagierte sowie zum Sturm auf das Kapitol aufrief, will Beal nicht kommentieren. Er sei ja selbst nicht dabei gewesen, und dem, was in den »Mainstream-Medien« dazu zu lesen sei, könne man nicht vertrauen.
Andrew Beals politische Ansichten kann man durchaus unsympathisch finden. Für die Mathematik spielt das aber keine Rolle. Die Weltanschauung einer Person ist dabei irrelevant, es zählt nur die Logik der Formeln. Die Behauptung von Beal ist entweder richtig oder falsch, und das wäre sie auch, wenn sie von einer anderen Person aufgestellt worden wäre.
Tatsächlich gab es schon früher ähnliche Ansätze, um den Satz von Fermat zu verallgemeinern. Denn genau darum handelt es sich bei der bealschen Vermutung: Für a = b = c ≥ 3 erhält man den fermatschen Satz – und für diesen Spezialfall ist die Hypothese von Beal dadurch auch bewiesen. Im Lauf der Zeit wurden Beweise für diverse andere Teilergebnisse gefunden. Bis heute ist es jedoch noch keiner Person gelungen, den allgemeinen Fall zu beweisen. Das Preisgeld von einer Million US-Dollar steht also weiterhin zur Verfügung. In der Mathematik kommt es eben auf Kreativität und Wissen an – auch ein hohes Preisgeld kann diesen Prozess nicht abkürzen.
Schreiben Sie uns!
Beitrag schreiben