Direkt zum Inhalt

Lexikon der Mathematik: charakteristische Funktion eines Differentialgleichungssystems

Lösung eines Differentialgleichungssystems, aufgefaßt als Funktion der unabhängigen Variablen und der Anfangswerte, falls jeweils eindeutige Lösungen von Anfangswertproblemen existieren.

Wir betrachten das Anfangswertproblem

\begin{eqnarray}{{\bf{\text{y}}}}^{^{\prime} }={\bf{\text{f}}}(x,{\bf{y}}\text{),}\quad{\bf{\text{y}}}({x}_{0}\text{)}={{\bf{\text{y}}}}_{0}\end{eqnarray}

mit gegebenen Anfangswerten (x0, y0) ∈ G für ein geeignetes Gebiet G ⊂ ℝ × ℝn. (1) besitze für alle (x0, y0) ∈ G genau eine (maximal fortgesetzte) Lösung y. Es bezeichne Φ(⋅, x0, y0) diese eindeutige Lösung. Dann heißt Φ charakteristische Funktion des Differentialgleichungssystems y′ = f(x, y).

[1] Kamke, E.: Differentialgleichungen, Lösungsmethoden und Lösungen I. B.G. Teubner Stuttgart, 1977.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.