Direkt zum Inhalt

Lexikon der Mathematik: isomorphe Automaten

Automaten mit gleichem Übergangs- und Akzeptierungsverhalten.

Zwei Automaten heißen isomorph, falls ihre Ein- und/oder Ausgabealphabete gleich sind und es eine bijektive Abbildung zwischen ihren Zustandsmen- gen gibt, so daß die Bilder der Anfangszustände des einen Automaten genau die Anfangszustände des anderen Automaten sind, die Bilder der Folgezustände eines Zustandes z bei Eingabe eines Zeichens x genau die Folgezustände des Bildes von z bei Eingabe von x sind, die Ausgaben des ersten Automaten in z (bei x) genau die Ausgaben des zweiten Automaten beim Bild von z (und x) sind, sowie die Bilder der Akzeptierungszustände des ersten Automaten genau die Akzeptierungszustände des zweiten Automaten sind.

Enthält ein Automatenmodell nicht alle genannten Konzepte, schwächt sich die Isomorphiebe- dingung entsprechend ab. Isomorphe Automaten haben identische Funktionalität.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.