Direkt zum Inhalt

Lexikon der Mathematik: Matrixkalkül

Darstellung der Theorie der linearen Abbildungen zwischen endlich-dimensionalen \({\mathbb{K}}\)-Vektorräumen mittels Matrizen über \({\mathbb{K}}\).

Einer linearen Abbildung von einem n-dimensionalen Vektorraum in einen m-dimensionalen Vektorraum entspricht dabei nach Wahl zweier Basen (Basis eines Vektorraumes) in den Vektorräumen eindeutig eine (m × n)-Matrix über \({\mathbb{K}}\), einem Endomorphismus eine quadratische Matrix, und der Identität die Einheitsmatrix. Isomorphismen werden durch reguläre Matrizen dargestellt, die Inverse eines Isomorphismus durch die entsprechende inverse Matrix.

Ebenso entspricht auch einer Bilinearform auf einem n-dimensionalen Vektorraum nach Wahl einer Basis eine (n × n)-Matrix.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.