Lexikon der Mathematik: nicht-Desarguessche projektive Ebene
projektive Ebene, in welcher die Desarguessche Annahme (Konfigurationstheorem) nicht gilt.
Eine nicht-Desarguessche projektive Ebene kann nicht in einen höherdimensionalen projektiven Raum eingebettet werden. Die Tatsache, daß nicht-Desarguessche projektive Ebenen existieren, zeigt, daß die Desarguessche Annahme ein unabhängiges Axiom der ebenen projektiven Geometrie ist. (Für den räumlichen Fall folgt die Gültigkeit der Desarguesschen Annahme aus den Inzidenzaxiomen der räumlichen projektiven Geometrie.)
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.