Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Logik: Das fehlende Puzzleteil

Gibt es eine Menge, die größer ist als die natürlichen Zahlen, aber kleiner als die reellen? Diese grundlegende Frage gehört zu den unbeweisbaren Problemen der Mathematik. Experten suchen deshalb nach neuen Gesetzen, die das mathematische Grundgerüst ergänzen und diese Unentscheidbarkeit aus dem Weg räumen.
Unendlichkeit

Das Konzept der Unendlichkeit hat schon immer zu Schwierigkeiten geführt: Philosophen und Theologen zerbrechen sich seit Jahrhunderten den Kopf darüber – ganz zu schweigen von Mathematikern, denen es erst im 19. Jahrhundert gelang, mit den unvorstellbaren Größen zu arbeiten. Tatsächlich stießen sie dabei schon früh auf verschiedene Arten von Unendlichkeiten, doch lange wussten sie nicht, wie man diese beschreiben oder miteinander vergleichen sollte.

In den 1870er Jahren gelang dem deutschen Mathema­tiker Georg Cantor schließlich der Durchbruch. Indem er Mengen mit unendlich vielen Elementen untersuchte, konnte er ihre Größen voneinander unterschieden und begründete dabei die moderne Mengenlehre, auf der inzwischen die gesamte Mathematik fußt.

Dieser Schritt ging aber nicht problemlos vonstatten. Wissenschaftler mussten eine Sammlung so genannter Axiome formulieren – unbeweisbare Aussagen, aus denen alle mathematischen Zusammenhänge folgen sollten, ohne dabei Widersprüche zu produzieren. Diese anspruchsvolle Aufgabe ist inzwischen größtenteils gelöst. Seit Beginn des 20. Jahrhunderts nutzt man ein System von Axiomen, genannt ZFC, das bisher widerspruchsfrei ist und eine umfangreiche Theorie der Unendlichkeiten umfasst.

Dennoch hat die moderne Mengenlehre Schwachstellen. Wie Kurt Gödel Anfang des 20. Jahrhunderts zeigte, gibt es grundlegende Fragen, die sich mit ihr nicht beantworten lassen, man kann sie weder beweisen noch widerlegen. Logiker versuchen daher die Theorie zu erweitern, um zumindest einige der hartnäckigen Rätsel zu lösen …

Kennen Sie schon …

Spektrum - Die Woche – Mehrere Higgs-Teilchen vor dem Aus?

2012 wurde der Nachweis des Higgs-Teilchens vom CERN bekannt gegeben, seitdem wird fleißig weiter geforscht. Warum gibt es mehr Materie als Antimaterie? Was ist Dunkle Materie? Diese und weitere Fragen behandeln wir in unserer Titelgeschichte. Außerdem: Die seelische Gesundheit unserer Kinder.

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Spektrum - Die Woche – Süßes Gift?

Entdecken Sie die Vorteile und Risiken einer zuckerfreien Ernährung in unserem Artikel »Süßes Gift«. Plus: Erfahren Sie in unserer Kolumne, warum im amerikanischen Wahlsystem nicht immer die Partei mit den meisten Stimmen gewinnt. Jetzt mehr erfahren!

  • Quellen

Cavitt, J.:Set-theoretic geology, the ultimate inner model, and new axioms. Harvard University, 2017

Heller, M., Woodin, H.:Infinity: New Research Frontiers. Cambridge University Press, 2011

Rittberg, C.:How Woodin changed his mind: New thoughts on the Continuum Hypothesis. Archive for History of Exact Sciences 69, 2015

Woodin, H.:In search of ultimate-L. Bulletin of Symbolic Logic 23, 2017

Woodin, H.:Strong axioms of infinity and the search for V. Proceedings of the International Congress of Mathematicians 2010, World Scientific, 2011

Schreiben Sie uns!

5 Beiträge anzeigen

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.