Direkt zum Inhalt

Lexikon der Mathematik: Cosinussatz

folgende Aussage aus der Geometrie:

In einem beliebigen ebenen Dreieck ist das Quadrat einer Seitenlänge gleich der Summe der Quadrate der beiden anderen Seitenlängen, vermindert um das doppelte Produkt aus diesen beiden Seitenlängen mit dem Cosinus des von diesen Seiten eingeschlossenen Winkels.

So gelten z. B. in einem Dreieck ΔABC mit den Seiten a, b, und c sowie den jeweils gegenüberliegenden Innenwinkeln α, β und γ die drei Gleichungen:

\begin{eqnarray}\begin{array}{c}{a}^{2}={b}^{2}+{c}^{2}-2bc\cdot \cos \alpha, \\ {b}^{2}={a}^{2}+{c}^{2}-2ac\cdot \cos \beta, \text{und}\\ {\text{c}}^{2}={a}^{2}+{b}^{2}-2ab\cdot \cos \gamma.\end{array}\end{eqnarray}

Abbildung 1 zum Lexikonartikel Cosinussatz
© Springer-Verlag GmbH Deutschland 2017
 Bild vergrößern

Für rechtwinklige Dreiecke geht der Cosinussatz in den Satz des Pythagoras über, da der Cosinus eines rechten Winkels Null ist.

  • Die Autoren
- Prof. Dr. Guido Walz

Schreiben Sie uns!

Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.

Partnerinhalte

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.