Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Mathematische Unterhaltungen: Krummes Origami

Papierfalten entlang gekrümmter Knicklinien erzeugt eine erstaunliche Vielfalt von Formen und fi ndet – mit anderen Materialien – sogar Anwendung in der Architektur.
Bunte Geometrische Körper aus Papier gefaltet

Unter einem Kegel stellt man sich in der Mathematik eher nicht einen Pflock vor, den man aufstellt, um ihn aus der Ferne mit einer rollenden Kugel umzuwerfen. Eine traditionelle Obst- oder Pommestüte oder auch eine Eiswaffel kommt da der Sache schon deutlich näher.

Der klassische Kegel (genauer: der gerade Kreiskegel) ist definiert als die Menge aller Geraden, die durch einen Punkt, die »Spitze« des Kegels, gehen und einen konstanten Winkel bilden mit einer weiteren Geraden, die auch durch die Spitze verläuft: der »Achse« des Kegels. Normalerweise interessiert man sich nicht für Geraden in ihrer unendlichen Länge, sondern beschränkt sich auf das Stück von der Spitze bis zu einer Ebene, die senkrecht zur Achse steht. Dort hat der Kegel seine kreisförmige Grundfläche.

Für die Hersteller von Tüten interessant ist die Tatsache, dass die Mantelfläche eines Kegels abwickelbar ist, das heißt, dass man sie knitterfrei aus einem Stück Papier herstellen kann (siehe »Kegel«). Das gilt bei Weitem nicht für jede Fläche …

Kennen Sie schon …

Spektrum Kompakt - 7/2025 - Paradox und Dilemma - Ausweglose Situationen in der Mathematik

Spektrum Kompakt – Paradox und Dilemma - Ausweglose Situationen in der Mathematik

Das Lösen von Paradoxa hat die Mathematik vorangebracht. Allerdings verstecken sich die Widersprüche auch im Alltag; zum Beispiel in den berühmten Fragen, wieso man so lange auf den Fahrstuhl warten muss, warum die Bahn immer zu spät kommt und wie lang die Grenze zwischen zwei Ländern wirklich ist.

Spektrum der Wissenschaft - 2/2025 - KI als Kopilot

Spektrum der Wissenschaft – KI als Kopilot

Künstliche Intelligenz ist immer öfter an mathematischen Durchbrüchen entscheidend beteiligt. Der Mathematiker Terence Tao erklärt im Interview, wie Beweisprüfer und KI-Programme die Arbeit der Fachleute ändern können. Daneben berichten wir über Waschbären, die in Deutschland und Europa weiter auf dem Vormarsch. Wir zeigen, welche Folgen diese invasive Art für Menschen und Ökosysteme hat. Im dritten Teil unserer Serie »50 Jahre Lucy« geht es um die 1925 veröffentlichte Erstbeschreibung des Australopithecus africanus: Raymond Dart führte damit eine neue Gattung für die Vorfahren des Menschen ein, die in der Fachwelt zunächst auf wenig Gegenliebe stieß. Ein weiterer Artikel widmet sich der Erzeugung von menschlichen Embryonen mit Hilfe der Stammzellenforschung und auch den daraus resultierenden ethischen Fragen.

Spektrum der Wissenschaft Spezial Physik - Mathematik - Technik - 4/2024 - Vielfältige Quanten

Spektrum der Wissenschaft – Vielfältige Quanten

Wir tauchen ein in die Welt der Quanten, die uns noch immer zahlreiche Rätsel aufgibt. Forscher entwickeln ständig neue Modelle und hinterfragen Grundlegendes, wie beispielsweise das Konzept der Zeit. Gleichzeitig macht die Entwicklung neuer Quantencomputer große Fortschritte und könnte unsere Verschlüsselungssysteme bedrohen. Experten arbeiten an neuen Methoden, um unsere Daten zu schützen. Erfahren Sie, wie diese Herausforderungen gemeistert werden und ob Kryptografen den Wettlauf gegen die Zeit gewinnen können.

Spektrum Kompakt – Paradox und Dilemma - Ausweglose Situationen in der Mathematik

Das Lösen von Paradoxa hat die Mathematik vorangebracht. Allerdings verstecken sich die Widersprüche auch im Alltag; zum Beispiel in den berühmten Fragen, wieso man so lange auf den Fahrstuhl warten muss, warum die Bahn immer zu spät kommt und wie lang die Grenze zwischen zwei Ländern wirklich ist.

  • Quellen

Demaine, E. D. et al.: Reconstructing David Huffman’s Legacy in Curved-Crease Folding. Origami5: Proceedings of the 5th International Conference on Origami in Science, Mathematics and Education (OSME 2010), Singapore, 13. –17. Juli 2010

Demaine, E. D. et al.: Design of Circular-Arc Curved Creases of Constant Fold Angle. Bridges 2020 Conference Proceedings.

Huffman, D. A.: Curvature and Creases: A Primer on Paper. In: IEEE Transactions on Computers C-25, 1976

Maleczek, R. et al.:Curved Crease Edge Rounding of Polyhedral Surfaces

Mundilova, K., Wills, T.: Folding the Vesica Piscis. Bridges 2018 Conference Proceedings

Mundilova, K.: Curved crease folds of spherical polyhedra with regular faces. Bridges 2019 Conference Proceedings.

Mundilova, K.: On mathematical folding of curved crease origami: Sliding developables and parametrizations of folds into cylinders and cones. Computer Aided Design 115, 2019

Sharp, J. et al.: D-Forms: Surprising new 3-D forms from flat curved shapes. Tarquin Publications, St. Albans (UK) 2009

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.