Lexikon der Mathematik: Koalition
in einem Spiel \(S=\displaystyle {\prod }_{i=1}^{n}{S}_{i}\) mit n Spielern \(\begin{eqnarray}{{\mathcal{S}}}_{1},\ldots, {{\mathcal{S}}}_{n}\end{eqnarray}\) die Zusammenfassung gewisser Spieler zu einer Menge K ⊂ {1,…,n}.
Als Mitglied i ∈ K der Koalition K betrachtet \(\begin{eqnarray}{{\mathcal{S}}}_{i}\end{eqnarray}\) alle Spieler \(\begin{eqnarray}{{\mathcal{S}}}_{j}\end{eqnarray}\) mit j ∉K als Gegner, die seinen Gewinn minimieren wollen. Entsprechend wird S durch K in die Mengen SK := ∏i∈KSi und SNK :=∏i∉KSi zerlegt. Besteht insbesondere jede Koalition nur aus einem Spieler, so erhält man wiederum ein nichtkooperatives n-Personen-Spiel.
Copyright Springer Verlag GmbH Deutschland 2017
Wenn Sie inhaltliche Anmerkungen zu diesem Artikel haben, können Sie die Redaktion per E-Mail informieren. Wir lesen Ihre Zuschrift, bitten jedoch um Verständnis, dass wir nicht jede beantworten können.